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ABSTRACT

In this dissertation we study the problem of fault diagnosis in both discrete event systems

and cyber physical systems. Discrete event systems (DESs) are event-driven systems with dis-

crete states that evolve in response to abrupt occurrences of discrete changes (called events).

The stochastic DESs are used to characterize the quantitative behavior of the system, by mod-

eling the uncertainty on the occurrence of events as random variables with certain distribution.

A stochastic DES is similar to the Markov chain models, with the difference being that, in

stochastic DESs, the transition is labeled with the event while the event information is omitted

in a Markov chain. Many physical systems, such as manufacturing systems, communication

protocols, reactive software, telephone networks, traffic systems, robotics and digital hardware,

can be modeled as DESs at a certain level of abstraction.

Fault diagnosis is to detect the occurrence of a fault so as to enable any fault tolerant

actions. It is a crucial and challenging problem that has attracted considerable attentions in the

literature of software engineering, automotive systems, power systems and nuclear engineering.

In this dissertation, we propose the online detection schemes for stochastic DESs and also

introduce the notions of missed detections (MDs) and false alarms (FAs), or equivalently,

false-negatives and false-positives, for the schemes. The idea is that given any observation (of

partially observed events), the detector recursively computes the conditional probability of the

nonoccurrence of a fault and issues a “fault” decision if the probability of the nonoccurrence of

a fault falls below an appropriately chosen threshold, and issues “no-decision” otherwise. We

establish that S-Diagnosability is a necessary and sufficient condition for achieving any desired

levels of MD and FA rates, where the notion of S-Diagnosability was proposed by Thorsley,

et al. in 2005, requiring that given any tolerable ambiguity level ρ and error bound τ , there

must exist a delay bound n such that for any fault trace, its extensions, longer than n and

probability of ambiguity higher than ρ, occur with probability smaller than τ . Algorithms for
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determining the detection scheme parameters of detection threshold and detection delay bound

for the specified MD and FA rates requirement are also presented, based on the construction of

an extended observer, which computes, for each observation sequence, the set of states reached

in the system model, along with their probabilities and the number of post-fault transitions

executed.

This dissertation also studies the fault diagnosis in cyber physical systems, where the dy-

namics of the physical systems over discrete sample instances are described by stochastic dif-

ference equations, and the nonfault behaviors are specified by linear-time temporal logic (LTL)

formulas over sequences of requirement variables that are functions of inputs and states (just

as the outputs). We first introduce the notion of an input-output stochastic hybrid automaton

(I/O-SHA), and then show that it can be used to model the refinement of a given discrete-time

stochastic system against its LTL specification so as to identify the system behaviors that sat-

isfy the nonfault specification versus the ones that violate it in form of reachability of a fault

location. For this we propose a refinement algorithm that refines the system model in form

of discrete-time stochastic equations with respect to its specification model in form of a Büchi

acceptor, and the resulting refinement can be modeled as an I/O-SHA. We further show that

the fault detection problem then reduces to a state estimation problem for the I/O-SHA. The

performance of the detection protocol is evaluated in terms of its FA and MD rates. We addi-

tionally propose the notion of S-Diagnosability for I/O-SHA, which can guarantee the existence

of detectors that can achieve any desired FA and MD rates.

We further consider the fault prognosis problem, where the goal is to predict a fault prior

to its occurrence, for stochastic DESs. We introduce m-steps Stochastic-Prognosability, or

simply Sm-Prognosability, requiring for any tolerance level ρ and error bound τ , there exists a

reaction bound k ≥ m, such that the set of fault traces for which a fault cannot be predicted

k steps in advance with tolerance level ρ, occurs with probability smaller than τ . Similar to

the fault diagnosis problem, we formalize the notion of a prognoser that maps observations to

decisions by comparing a suitable statistic with a threshold, and show that Sm-Prognosability

is a necessary and sufficient condition for the existence of a prognoser with reaction bound at

least m (i.e., prediction at least m-steps prior to the occurrence of a fault) that can achieve
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any specified FA and MD rate requirement. Moreover, we provide a polynomial algorithm for

verifying Sm-Prognosability.
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CHAPTER 1. INTRODUCTION

Given a set of system behaviors and a system specification identifying the set of system

behaviors that are desirable, execution of a trace that violates the specification constitutes

a fault, which could be classified as a permanent fault (as studied in [1]) or an intermittent

fault (as studied in [2, 3, 4]), and needs to be detected accurately within proper delay bound

to ensure timely activation of any fault tolerance action. The problem of fault detection is

essential to perform any fault tolerance action and is an important and challenging problem in

many disciplines such as software engineering [5], automotive systems [6], power systems [7],

nuclear engineering [8], aerospace engineering [9] and digital circuits [10]. The problem of fault

detection has been widely researched [11, 12, 13, 14, 15], and is recently studied in the setting

of discrete event systems (DESs) [10, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30],

distributed/decentralized systems [1, 21, 31, 32, 33, 34, 35, 36, 37, 38], stochastic systems

[39, 40, 41, 42, 43, 44, 45, 46, 47] and systems with temporal logic fault specification [48, 49, 50].

In this dissertation, we first consider stochastic DESs with partial observability of events

subjected to faults, modeled as execution of fault traces, or equivalently reachability of fault

states, meaning that the fault to be detected is of permanent type. We explore the online

detection algorithm, as well as its performance evaluation. Then we investigate the fault

detection of certain cyber physical systems, whose physical dynamics over discrete sample

instances are described by stochastic difference equations with their nonfault behaviors specified

by linear-time temporal logic (LTL) formulas over sequences of requirement variables that are

functions of inputs and states (just as the outputs). The problem of fault prognosis, where the

goal is to predict a fault prior to its occurrence, is also studied.
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1.1 Stochastic Discrete Event Systems

Discrete event systems (DESs) are event-driven systems with discrete states that evolve in

response to abrupt occurrences of discrete changes (called events). Typical examples of the

discrete events include completion of a transaction in a database system, the occurrence of a

fault in a manufacture system and the transmission of a signal in a networked system, etc.

Many physical systems, such as manufacturing systems, communication protocols, reactive

software, telephone networks, traffic systems, robotics and digital hardware, can be modeled as

DESs at a certain level of abstraction [51]. In contrast to the continuous systems in which the

system state can take continuous value and changes continuously according to the evolution

of time, the state of discrete event systems can only take discrete values, which changes in

response to the occurrence of events, and in between event occurrences, the system remains

in the current state [52]. The events can be the change of an integer value, the pushing of a

button, or receiving a printing command for a printer, etc. The behavior of a DES is then

consisting of all possible sequences of events the system can execute starting from its initial

state.

The stochastic DESs are used to characterize the quantitative behavior of the system,

by modeling the uncertainty on the occurrence of events as random variables with certain

distribution. The formalism of probabilistic languages were introduced to describe the behavior

of stochastic DESs in [53, 54]. In [53] the probabilities on transitions on each event from any

state sum to one while in [54] the cumulative probability of state change over all states should

be at most one. In this dissertation we use the model presented in [54], which is similar to the

Markov chain models [55], with the difference being that, in stochastic DESs, the transition is

labeled with the event while the event information is omitted in a Markov chain.

1.2 Diagnosis of Stochastic Discrete Event Systems

Logical Diagnosability (referred as Diagnosability in [16]) of DESs was introduced in [16], the

idea being that a diagnosable DES must possess a delay bound n such that for any fault trace

executed by the DES, its ambiguity with a nonfault trace should fully resolve within at most n
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steps. Algorithms with polynomial complexity for verifying Logical Diagnosability were given in

[17] and [20]. The notion has been extended to decentralized setting in [21], distributed setting

in [23] and inference-based setting in [32]. The failure diagnosis for stochastic DESs was later

studied in [41] which proposed Stochastic (S)-Diagnosability (referred as AA-diagnosability in

[41]) requiring that given any tolerable ambiguity level ρ and error bound τ , there must exist

a delay bound n such that for any fault trace, its extensions, longer than n and probability of

ambiguity higher than ρ, occur with probability smaller than τ . Sufficient method for verifying

S-Diagnosability was obtained in [41] that checks for certain structural properties of a diagnoser.

Since the initial work of [41], the following other works on diagnosis of stochastic DESs have

appeared in literature. [22] studied the same problem, allowing the observations to be random.

Reference [18] later showed that [41] is general enough to also capture any randomized obser-

vations, by way of suitably refining the plant model. Problems on counting the occurrences of

intermittent/repetitive failure in stochastic DESs was researched in [4], extending the concepts

first introduced in [2]. In [3] the authors proposed an approximated minimum mean square

error counter for estimating the number of failure occurrence. The sensor selection problem to

support diagnosability was introduced in [56] and was adopted for stochastic problems in [24]

and [25] for counting the number of routing violations in material flow networks. The diagnosis

problem is also investigated in stochastic Petri nets [39], [44]. Besides the diagnosis problem,

the control problems for stochastic DESs have been examined in [54, 57, 58, 59, 60, 61].

The above cited works only study the offline verification of the S-Diagnosability property;

a technique online fault detection hasn’t yet been examined in literature. This dissertation

investigates the online detection schemes for stochastic DESs and also introduces the notions

of missed detections (MDs) and false alarms (FAs), or equivalently, false-negatives and false-

positives, for the schemes. Due to the probabilistic nature of the problem, MDs and FAs are

possible even for S-Diagnosable systems, and we establish that S-Diagnosability is a necessary

and sufficient condition for achieving any desired levels of MD and FA rates.

We present a detection scheme, that can achieve the specified MD and FA rates, based on

comparing a suitable detection statistic with a suitable detection threshold. We also algorithmi-

cally compute the corresponding detection delay bound. The idea is that given any observation
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(of partially observed events), the detector recursively computes the conditional probability of

the nonoccurrence of a fault and issues a “fault” decision if the probability of the nonoccurrence

of a fault falls below an appropriately chosen threshold, and issues “no-decision” otherwise. For

systems that possesses S-Diagnosability property, there always exists a detection threshold and

a delay bound so that this detector is able to achieve any desired level of MD and FA rates.

Conversely, the existence of a detector for any desired performance requirement implies that

the system possesses the S-Diagnosability property. Algorithms for determining the detection

scheme parameters of detection threshold and detection delay bound for the specified MD and

FA rates requirement are also presented, based on the construction of an extended observer,

which computes, for each observation sequence, the set of states reached in the system model,

along with their probabilities and the number of post-fault transitions executed. The algo-

rithms are guaranteed to terminate and the upper bounds on the number of iterations prior to

termination are reported as part of the correctness proof of the algorithms. Our detection strat-

egy works for S-Diagnosable system as well as non-S-Diagnosable systems in the same manner.

For S-Diagnosable systems it is possible to achieve arbitrary performance requirement for FA

and MD rates, while for a non-S-Diagnosable system an arbitrary performance requirement is

achievable only for the FA rate, whereas a lower bound exists for the achievable MD rate that

is a function of the FA rate, and increases as FA rate requirement is made more stringent by

decreasing it. A variant of the above mentioned algorithm is also presented to compute an

upper bound for the minimum achievable MD rate for a non-S-Diagnosable system.

1.3 Diagnosis of Cyber Physical Systems

Stochastic hybrid system (SHS) is a system that involves both continuous and discrete

stochastic dynamics. The problems of reachability, safety as well as control problem have been

address in the literature [62, 63, 64, 65, 66, 67, 68, 69, 70]. For example, the probabilistic

reachability problem on discrete time SHS is considered in [62, 63, 66] where the optimal

Markov control policy is synthesized by dynamic programming, whereas the continuous time

SHS is studied in [67]. The abstraction of a SHS is examined in [64, 65, 69], where the goal

is to find a abstraction model which is computational ease and possesses the exact or error-
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bounded behaviors with the original system. Another research topics on SHS is model checking

for temporal property [68, 70].

In this dissertation we study fault diagnosis of cyber physical systems, where the physical

dynamics over discrete sample instances are described by stochastic difference equations, and

the nonfault behaviors are specified by linear-time temporal logic (LTL) formulas over sequences

of requirement variables that are functions of inputs and states (just as the outputs). LTL

formulas are widely used as correctness requirements (see for example [49, 71]) owing to the

fact that they are easier to specify than automata models or formal languages, yet they are

compact and expressive.

We introduce the notion of an input-output stochastic hybrid automaton (I/O-SHA), gen-

eralizing its logical counterpart presented in [72] by allowing randomness in invariants, guards,

data updates, and output assignments. Then we show that I/O-SHA model can be used to

model the refinement of a given discrete-time stochastic system against its LTL specification so

as to identify the system behaviors that satisfy the nonfault specification versus the ones that

violate it in form of reachability of a fault location. For this we propose a refinement algorithm

that refines the system model in form of discrete-time stochastic equations with respect to its

specification model in form of a Büchi acceptor, and the resulting refinement can be modeled as

an I/O-SHA. We further show that the fault detection problem then reduces to a state estima-

tion problem for the I/O-SHA, i.e., the probability of specification violation versus no violation

can be estimated via a state estimation computation in the I/O-SHA model. This statistic,

the probability of no-fault, is then used for issuing detection decisions. The performance of the

detection protocol is evaluated in terms of its FA and MD rates. We additionally propose the

notion of S-Diagnosability for I/O-SHA, which can guarantee the existence of detectors that

can achieve any desired FA and MD rates.

1.4 Prognosis of Stochastic Discrete Event Systems

We further consider the fault prognosis problem, where the goal is to predict a fault prior

to its occurrence, for stochastic DESs. The problem of predicting a fault prior to its occurrence

is a well researched area (see for example [73, 74, 75, 76, 77, 78]). In [74] the notion of
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uniformly bounded prognosability of fault was formulated for logical discrete event systems

(DESs), where each fault trace must possess a nonfault-prefix such that for all indistinguishable

traces, a future fault is inevitable within a bounded delay that is uniform across all fault-

traces. The notion was later extended to the decentralized setting in [75] and the requirement

of the existence of a uniform bound was also removed. Reference [75] also established that

the notion of prognosability is equivalent to the existence of a prognoser with no FA and

no MD. The issue of prognosability under a general decentralized inferencing mechanism was

proposed in [79], where a prognostic decision involved inferencing among a group of local

prognosers over their local decisions and their ambiguity levels, and the notion of inference-

prognosability and its verification was introduced to capture the necessity and sufficiency of

inferencing based decentralized prognosis. The problem of distributed prognosability under

bounded-delay communications among the local prognosers was studied in [80], where the

notion of joint-prognosability and its verification was proposed.

We introduce the notion of m-steps Stochastic-Prognosability, or simply Sm-Prognosability,

requiring for any tolerance level ρ and error bound τ , there exists a reaction bound k ≥ m,

such that the set of fault traces for which a fault cannot be predicted k steps in advance with

tolerance level ρ, occurs with probability smaller than τ . Similar to the fault diagnosis problem,

we formalize the notion of a prognoser that maps observations to decisions by comparing a

suitable statistic with a threshold, and show that Sm-Prognosability is a necessary and sufficient

condition for the existence of a prognoser with reaction bound at least m (i.e., prediction at

least m-steps prior to the occurrence of a fault) that can achieve any specified FA and MD rate

requirement. In this sense Sm-Prognosability can be viewed as a generalization of the logical

prognosability, since it provides a basis for the existence and synthesis of a prognoser that can

achieve a user-specified level of FA and MD. In contrast, the logical version is rather rigid,

offering no further options for systems that fail to be logically prognosable, even when there

may exist a prognoser that can achieve a satisfying performance as measured in terms of FA and

MD rates. Further, we also provide a polynomial algorithm for verifying Sm-Prognosability.
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1.5 Organization of Dissertation

The rest of this dissertation is organized as follows.

Chapter 2 contains the notations and preliminaries which are necessary for this dissertation,

including language, Markov chain, the definition of S-Diagnosability, as well as linear-time

temporal logic (LTL).

In Chapter 3, we present a fault detection scheme for stochastic DES, which recursively

computes the conditional probability of the nonoccurrence of a fault and issues a “fault” de-

cision if the probability of the nonoccurrence of a fault falls below an appropriately chosen

threshold, and issues “no-decision” otherwise. For systems that possesses S-Diagnosability

property, there always exists a detection threshold and a delay bound so that this detector is

able to achieve any desired level of MD and FA rates. Conversely, the existence of a detector

for any desired performance requirement implies that the system possesses the S-Diagnosability

property. Algorithms for determining the detection scheme parameters of detection threshold

and detection delay bound for the specified MD and FA rates requirement are also presented,

based on the construction of an extended observer, which computes, for each observation se-

quence, the set of states reached in the system model, along with their probabilities and the

number of post-fault transitions executed. We also explore the non-S-Diagnosable system, for

which an arbitrary performance requirement is achievable only for the FA rate, whereas a lower

bound exists for the achievable MD rate that is a function of the FA rate, and increases as FA

rate requirement is made more stringent by decreasing it. A variant of the above mentioned

algorithm is also presented to compute an upper bound for the minimum achievable MD rate

for a non-S-Diagnosable system.

In Chapter 4, we study fault diagnosis of cyber physical systems, where the physical dy-

namics over discrete sample instances are described by stochastic difference equations and the

nonfault behaviors are specified by linear-time temporal logic (LTL) formulas over sequences

of requirement variables that are functions of inputs and states (just as the outputs). Firstly,

we propose the notion of input-output stochastic hybrid automaton (I/O-SHA), extending the

logical input-output hybrid automaton (I/O-HA) introduced in [72], by allowing randomness
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in invariants, guards, data updates, and output assignments. Secondly, we present a method to

refine a given discrete-time stochastic system against a deterministic (LTL) specification (one

that can be accepted by a deterministic Büchi automaton), where the refinement is an I/O-SHA

with the property that the violation of the LTL specification can be captured as a reachability

property, and the probability of specification violation versus no violation can be estimated

via a state estimation computation in the I/O-SHA model. Thirdly, we provide a procedure

to recursively compute the probability of fault versus no-fault (specification violation versus

no-violation), which is used as a statistic for issuing detection decisions. Finally, we propose

the notion of S-Diagnosability for I/O-SHA, which can guarantee the existence of detectors

that can achieve any desired FA and MD rates.

In Chapter 5, the problem of fault prognosis, where the goal is to predict a fault prior

to its occurrence, is investigated. We propose the notion of Sm-Prognosability which requires

that a fault should be statistically predicted at least m steps in advance with large probability.

We show that Sm-Prognosability is necessary and sufficient for the existence of a m-prognoser

satisfying arbitrary FA and MD rates requirement. Polynomial verification algorithm for Sm-

Prognosability is also presented. Practical examples on “crowd” protocol and HVAC system

are provided to illustrate the work in this chapter.

In Chapter 6, we summarize the work and conclude with the discussions of future work.
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CHAPTER 2. NOTATIONS AND PRELIMINARIES

This chapter contains the notations and preliminaries which are necessary for this disserta-

tion, including language, Markov chain, the definition of S-Diagnosability, as well as linear-time

temporal logic (LTL). A more thorough introduction can be found in [51, 54, 55, 81, 82, 83].

2.1 Language, Automaton and Markov Chain

For an event set Σ, define Σ := Σ ∪ {ε}, where ε denotes “no-event”. The set of all finite

length event sequences over Σ, including ε, is denoted as Σ∗. A trace is a member of Σ∗ and a

language is a subset of Σ∗. We use s ≤ t to denote that s ∈ Σ∗ is a prefix of t ∈ Σ∗, pr(s) to

denote the set of all prefixes of s, and |s| to denote the length of s or the number of events in s.

For ∼∈ {<,≤, >,≥,=} and n ∈ N, where N denotes the set of all nonnegative integers, define

Σ∼n := {s ∈ Σ∗ : |s| ∼ n} and denote Σ=n as Σn for simplicity. For L ⊆ Σ∗, its prefix-closure is

defined as pr(L) :=
⋃
s∈L pr(s), and L is said to be prefix-closed (or simply closed) if pr(L) = L.

Given two languages L1 and L2, their concatenation is defined as L1L2 := {st : s ∈ L1, t ∈ L2},

the set of traces in L1 after L2 is defined as L1\L2 := {t ∈ Σ∗ : ∃s ∈ L2, st ∈ L1}, and the set

of traces in L1 quotient L2 is defined as L1/L2 := {s ∈ pr(L1) : ∃t ∈ L2, st ∈ L1}.

A stochastic DES can be modeled by a stochastic automaton G = (X,Σ, α, x0), where X is

the set of states, Σ is the set of events, x0 ∈ X is the initial state, and α : X × Σ×X → [0, 1]

is the transition probability function [54] satisfying ∀x ∈ X,
∑

σ∈Σ

∑
x′∈X α(x, σ, x′) = 1, i.e.,

there is no “termination” at any of the states. (Note there is no loss of generality in as-

suming no termination, since otherwise, one can augment the model with a newly introduced

“termination-state”, and transitions from each state to the termination state on a newly intro-

duced “termination-event” that is unobservable and whose occurrence probability equals the
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probability of termination of the said state.) G is non-stochastic if α : X × Σ × X → {0, 1},

and a non-stochastic DES is deterministic if ∀x ∈ X,σ ∈ Σ,
∑

x′∈X α(x, σ, x′) ∈ {0, 1}, i.e.,

each state has at most one transition on each event. The transition probability function α can

be generalized to α : X × Σ∗ ×X in a natural way: ∀xi, xj ∈ X, s ∈ Σ∗, σ ∈ Σ, α(xi, sσ, xj) =∑
xk∈X α(xi, s, xk)α(xk, σ, xj), and α(xi, ε, xj) = 1 if xi = xj and 0 otherwise. Define a tran-

sition in G as a triple (xi, σ, xj) ∈ X × Σ ×X where α(xi, σ, xj) > 0 and define the language

generated by G as L(G) := {s ∈ Σ∗ : ∃x ∈ X,α(x0, s, x) > 0}.

The initialization of a stochastic automaton can also be modeled as an initial state distri-

bution π0 over the state space X instead of an initial state x0, where π0 is a row vector whose

elements are nonnegative and sum to one. In this case, the generating probability of an event

trace s ∈ L(G) is given by αG(s) :=
∑

xj∈X π0(xj)
∑

x∈X α(xj , s, x). Two automata, defined

over the same event set, are said to be p-equivalent if for every event trace, the generating

probability in two automata are equal [84]. A polynomial time algorithm for checking whether

or not two automata are p-equivalent is presented in [84], which also returns a minimal length

event trace that serves as a counterexample (has different generating probabilities in the two

automata) in case the two automata are not p-equivalent.

To represent the limited sensing capabilities of a diagnoser/prognoser, we introduce an event

observation mask, M : Σ→ ∆, where ∆ is the set of observed symbols and M(ε) = ε. An event

σ is unobservable if M(σ) = ε. The set of unobservable events is denoted as Σuo, and so the

set of observable events is given by Σ − Σuo. Note this mask function is more general than a

natural projection in that it allows unobservable events (with mask value ε) as well as partially

observable events (with mask value non-ε but identical to the mask value of another event). For

example in a material handling system, it may be possible to sense the arrival of a part but not

its type, and so all arrivals at a certain sensor would be indistinguishable from each other, yet

not fully unobserved. The observation mask can be generalized to M : Σ∗ → ∆∗ in a natural

way: ∀s ∈ Σ∗, σ ∈ Σ, L ⊆ Σ∗, M(ε) = ε, M(sσ) = M(s)M(σ) and M(L) = {M(s) : s ∈ L}.

Example 1. Fig. 2.1 is an example of a stochastic automaton G. The set of states is X =

{0, 1, 2, 3} with initial state x0 = 0, event set Σ = {a, b, c, f}. A state is depicted as a node,

whereas a transition is depicted as an edge between its origin and termination states, with its
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Figure 2.1 Stochastic automaton G for Example 1.

event name and probability value labeled on the edge. The observation mask M is such that

M(f) = ε and otherwise M(σ) = σ. �

Given a stochastic DES G = (X,Σ, α, x0), its embedded Markov chain is obtained by ab-

stracting out the event information associated with the transitions, i.e., the embedded Markov

chain is given by (X,Ω, x0), where Ω is a size-|X| × |X| square matrix with ijth entry given

by Ωij =
∑

σ∈Σ α(xi, σ, xj). (Note the Markov chain contains at most one transition between

a pair of states in each direction and does not carry an event label.) The following is a useful

property of a finite state Markov chain, [55].

Property 1. Let X be the state space of a finite state Markov chain and X = XR ∪XT , where

XR and XT denote the set of recurrent and transient states, respectively. Let x ∈ X be an

arbitrary state of the chain and t be any transition sequence starting from x. Then

(∀τ > 0)(∃n ∈ N)Pr(t : ∃x′ ∈ XT , α(x, t, x′) > 0, |t| ≥ n) < τ,

which means that as the number of transitions increases, the probability of the Markov chain

being in a transient state approaches zero.

For a stochastic automaton G = (X,Σ, α, x0), a component C = (XC , αC) of G is a “sub-

graph” of G, i.e., XC ⊆ X and ∀x, x′ ∈ XC and σ ∈ Σ, αC(x, σ, x′) = α(x, σ, x′), whenever

the latter is defined. C is said to be a strongly connected component (SCC) or irreducible if

∀x, x′ ∈ XC , ∃s ∈ Σ∗ such that αC(x, s, x′) > 0. A SCC C is said to be closed if for each

x ∈ XC ,
∑

σ∈Σ

∑
x′∈XC αC(x, σ, x′) = 1. The states which belong to a closed SCC are re-

current states and the remaining states (that do not belong to any closed SCC) are transient

states. A closed or recurrent SCC with finitely many states possesses a unique stationary state
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distribution after reaching which the state distribution remains unchanged. A state is periodic

with period k ≥ 2, if any return to this state must occur in multiples of k steps. A state is

aperiodic if it is not periodic. A SCC is aperiodic if it contains an aperiodic state (and in which

case all its states are also aperiodic) [55].

A component with dual transition distribution is denoted as C = (XC , {α1
C , α

2
C}), where

transitions are associated with a pair of transition distribution functions α1
C and α2

C . A com-

ponent C with dual distribution is a bi-SCC if both C1 = (XC , α
1
C) and C2 = (XC , α

2
C) are

strongly connected. A bi-SCC C is a bi-closed SCC if both C1 = (XC , α
1
C) and C2 = (XC , α

2
C)

are closed. For a bi-closed SCC C with event labels Σ, we can construct two embedded

stochastic automata A1
C = (XC ,Σ, α

1
C , π

1
C) and A2

C = (XC ,Σ, α
2
C , π

2
C), where π1

C and π2
C are

the stationary state distributions of A1
C and A2

C respectively. A bi-closed SCC C is said to be

p-equivalent if its embedded automata A1
C and A2

C are p-equivalent.

For a stochastic automaton G = (X,Σ, α, x0) with generated language L(G) = L, let

K ⊆ L be a nonempty closed sublanguage representing a nonfault specification for G, i.e.,

L −K consists of behaviors that execute some fault. Then the task of diagnosis is to detect

the execution of any trace in L −K after its execution, within certain delay bound and with

sufficient confidence. Let K ⊆ L be generated by a deterministic automaton R = (Q,Σ, β, q)

such that L(R) = K (from now on we interchangably use K and R to refer to the “nonfault

specification”). Then the refinement of the plant with respect to the specification, denoted

as GR, can be used to capture the fault traces in the form of the reachability of a fault state

carrying the label F in GR, which is given by GR := (Y,Σ, γ, (x0, q0)), where Y = X × Q

and Q = Q ∪ {F}, and ∀(x, q), (x′, q′) ∈ X × Q, σ ∈ Σ, γ((x, q), σ, (x′, q′)) = α(x, σ, x′) if the

following holds:

(q, q′ ∈ Q ∧ β(q, σ, q′) > 0) ∨ (q = q′ = F ) ∨

q′ = F ∧
∑
q∈Q

β(q, σ, q) = 0

 ,

and otherwise γ((x, q), σ, (x′, q′)) = 0. Then it can be seen that the refined plant GR has the

following properties: (1) L(GR) = L(G) = L, (2) any fault trace s ∈ L − K transitions the

refinement GR to a fault state (a state containing F as its second coordinate), and (3) the

occurrence probability of each trace in GR is the same as that in G, i.e.,
∑

x∈X α(x0, s, x) =



www.manaraa.com

13

∑
(x,q)∈X×Q γ((x0, q0), s, (x, q)).

For yi, yj ∈ Y and δ ∈ ∆, define the set of traces originating at yi, terminating at yj

and executing a sequence of unobservable events followed by a single observable event with

observation δ as LGR(yi, δ, yj) := {s ∈ Σ∗ : s = uσ,M(u) = ε,M(σ) = δ, γ(yi, s, yj) > 0}.

Define α(LGR(yi, δ, yj)) :=
∑

s∈L
GR

(yi,δ,yj)
γ(yi, s, yj) as the occurrence probability of traces in

LGR(yi, δ, yj) and denote it as µi,δ,j for short. Also define λij =
∑

σ∈Σuo
γ(yi, σ, yj) as the

probability of transitioning from yi to yj while executing a single unobservable event. Then

it can be seen that µi,δ,j =
∑

k λikµk,δ,j +
∑

σ∈Σ:M(σ)=δ γ(yi, σ, yj), where the first term on

the right hand side (RHS) involves transitioning in at least two steps via some intermediate

state, whereas the second RHS term involves transitioning directly in exactly one step. Thus

for each δ ∈ ∆, given the values {λij |i, j ∈ Y } and {
∑

σ∈Σ:M(σ)=δ γ(yi, σ, yj)|i, j ∈ Y }, all the

probabilities {µi,δ,j |i, j ∈ Y } can be found by solving the following matrix equation (see for

example [85] for a similar matrix equation):

µ(δ) = λµ(δ) + γ(δ), (2.1)

where µ(δ), λ and γ(δ) are all |Y | × |Y | square matrices whose ijth elements are given by

µi,δ,j , λij and
∑

σ∈Σ:M(σ)=δ γ(yi, σ, yj), respectively. The complexity of finding µi,δ,j by solving

equation (2.1) is O(|Y |3).

Example 2. For system presented in Fig. 2.1, the deterministic nonfault specification R is given

in Fig. 2.2. Then the refined plant GR is shown in Fig. 2.3. Let the state space of GR be

Y = {y1 = (0, 0), y2 = (1, 1), y3 = (2, 2), y4 = (3, F )}. By solving matrix equations (2.1), we

get

µ(a) =



0 1 0 0

0 0 0 .05

0 0.1 0 0

0 0 0 .5
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Figure 2.2 Nonfault specification R for Example 2.

Figure 2.3 The refined plant for Example 2.

µ(b) =



0 0 0 0

0 0 .9 .05

0 0 0 0

0 0 0 .5



µ(c) =



0 0 0 0

0 0 0 0

0 0 .9 0

0 0 0 0


.

�

2.2 Stochastic Diagnosability of DESs

Given a stochastic DES G = (X,Σ, α, x0) and its deterministic nonfault specification R,

with L = L(G) and K = L(R), L − K ⊆ L is the set of all fault traces. The objective of

the diagnosability problem is to determine, under what conditions the occurrence of a fault

trace s ∈ L − K can be detected within an uniformly bounded delay. The definition of S-
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Diagnosability requires that given any tolerance level ρ and error bound τ , there must exist

a delay bound n such that for any fault trace s ∈ L − K, its extensions, longer than n and

probability of ambiguity higher than ρ, occur with probability smaller than τ .

Definition 1. Given a stochastic DES G = (X,Σ, α, x0), deterministic nonfault specification

R = (Q,Σ, β, q0) with generated languages L = L(G) and K = L(R), (L,K) is said to be

Stochastically Diagnosable, or simply S-Diagnosable, if

(∀τ > 0 ∧ ∀ρ > 0)(∃n ∈ N)(∀s ∈ L−K)Pr(t : t ∈ L\s, |t| ≥ n, Pramb(st) > ρ) < τ, (2.2)

where Pramb : L−K → [0, 1] is a map that assigns to each fault trace s ∈ L−K, the probability

of s being ambiguous, which is the conditional probability of all nonfault indistinguishable traces

conditioned by the fact that ambiguity can only arise from the system traces that produce the

same observation as s, and is given by:

Pramb(s) = Pr(u ∈ K|M(u) = M(s)) =
Pr(u ∈ K : M(u) = M(s))

Pr(u ∈ L : M(u) = M(s))
(2.3)

Note in the definition of Pramb(s), “|” denotes the conditioning operation.

Remark 1. The definition of S-Diagnosability introduced above can be seen to be the same as

AA-diagnosability (see Definition 2 below taken from [41]).

Definition 2 ([41]). A live, prefix-closed language L is AA-diagnosable with respect to an

observation mask M and a set of transition probability p if

(∀τ > 0 ∧ ∀α < 1)(∃n ∈ N)(∀s ∈ L−K)Pr(t : t ∈ L\s, |t| ≥ n,Dα(st) = 0) < τ,

where the Dα function is defined as

Dα(st) =


1 if Pr(u ∈ L−K|M(u) = M(st)) > α

0 otherwise.

It is trivial to show that for a given s and its extension t, Dα(st) = 0 if and only if the set of

ambiguous nonfault traces occur with high probability, as can be seen: Dα(st) = 0⇔ Pr(u ∈

L−K|M(u) = M(st)) ≤ α ⇔ Pr(u ∈ K|M(u) = M(st)) ≥ 1− α ⇔ Pramb(st) ≥ 1− α =: ρ,

and therefore the Definition 1 and 2 presented above are equivalent. �
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The next definition introduces a stronger version, called SS-Diagnosability (referred as A-

diagnosability in [41]), by setting ρ = 0 in Definition 1.

Definition 3. Given a stochastic DES G = (X,Σ, α, x0), deterministic nonfault specification

R = (Q,Σ, β, q0) with generated languages L = L(G) and K = L(R), (L,K) is said to be

Strongly Stochastically Diagnosable, or simply SS-Diagnosable, if

(∀τ > 0)(∃n ∈ N)(∀s ∈ L−K)Pr(t : t ∈ L\s, |t| ≥ n, Pramb(st) > 0) < τ.

Remark 2. The definition of SS-Diagnosability introduced above can be seen to be the same

as A-diagnosability proposed in [41] as demonstrated next. Consider the definition of [41].

Definition 4 ([41]). A live, prefix-closed language L is A-diagnosable with respect to an obser-

vation mask M and a set of transition probability p if

(∀τ > 0)(∃n ∈ N)(∀s ∈ L−K)Pr(t : t ∈ L\s, |t| ≥ n,D(st) = 0) < τ,

where the D function is defined as

D(st) =


1 if M(u) = M(st)⇒ u ∈ L−K

0 otherwise

.

It is trivial to show that in Definition 4, D(st) = 0 if and only if Pramb(st) > 0 and therefore

the Definition 3 and 4 presented above are equivalent. �

Example 3. Consider the system G and nonfault specification R in Fig. 2.4. The set of states

is X = {0, 1, 2, 3} with initial state x0 = 0, event set Σ = {a, b, c, σuo, σf}. In this example,

σuo and σf can not be detected by any sensor, whereas the observability of events a, b, c can

vary depending on the configuration of the sensors used. Some examples we will use below are

the following three projection masks for which observable events have identity masks, and so

only the unobservable events are mentioned (note while all of three mask functions considered

above are natural projections, our framework allows more general non-projection masks):

• Observation mask M1: Σuo = {c, σf , σuo};

• Observation mask M2: Σuo = {b, σf , σuo};
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Figure 2.4 System, specification, refinement for Example 3: (a) Stochastic automaton G. (b)
Deterministic nonfault specification R. (c) Refinement GR.

• Observation mask M3: Σuo = {b, c, σf , σuo}.

According to Definition 1 and 3, if the observation mask is M1, then the system is SS-

Diagnosable: for a fault trace s ∈ σfa
∗ba∗, Pramb(st) = 0 for all t ∈ L\s since b can be

observed after the execution of a fault and no b is possible after a nonfault trace in σuo(a+ c)∗;

whereas for a fault trace s ∈ σfa∗, Pramb(st) > 0 if and only if no b is executed, i.e., t = an,

whose probability approaches zero as n grows arbitrarily large.

If the observation mask is M2 instead of M1, i.e., b is unobservable while c is observable,

then the system is not SS-Diagnosable, since for every fault trace s ∈ σfa∗ ∪ σfa∗ba∗, there is

a nonfault trace s′ ∈ σuoa∗ that has the same observation as s, namely a sequence of a’s, and

so Pr(t : t ∈ L\s, |t| ≥ n, Pramb(st) > 0) = 1 for all n ∈ N. However, since for any fault trace

s and its extension t, with n := |st|, Pramb(st) = 0.9n/1, which decreases as n increases. So

we can always choose an n ∈ N such that 0.9n < ρ, i.e., Pramb(st) < ρ for all t that is longer

than n. Thus the system under the observation mask M2 is S-Diagnosable (even though not

strongly).
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In the case of the observation mask M3, i.e., both b and c being unobservable, the system is

not S-Diagnosable, since for any fault trace s and its extension t ∈ L\s, we have Pramb(st) =

0.5, which is a constant. �

2.3 Linear-time Temporal Logic

Later in this dissertation, we study the fault diagnosis in cyber physical systems, where

the physical system is subject to disturbance and noise, as modeled by stochastic difference

equations:

xk+1 = f(xk, uk, vk)

rk = g(xk, uk)

yk = h(xk, uk, wk).

where u, x, r, y, v, w represent, respectively, the input, state, requirement (unobserved), output

(observed), disturbance and noise variables, and k is the time index. Note the requirement

variable, being user-defined, is independent of disturbance or noise. The properties of the

nonfault system behaviors are described by using a LTL formula over the requirement variables,

which may not be directly observed and hence must be estimated from the observations of

inputs and outputs. In the following we present a brief description of LTL; a more thorough

introduction can be found in [81, 82, 83].

LetMd = (Ld, δ, AP, label) be a state transition graph, where Ld is the set of states, δ : Ld →

2Ld is a total transition relation, i.e., ∀l ∈ Ld, δ(l) 6= ∅, AP is a finite set of atomic proposition

symbols, and label : Ld → 2AP is a function that labels each state with the set of atomic

propositions true at that state. A sequence of states π = (l0(π), l1(π), . . . ) is a state trace in

Md if li+1(π) ∈ δ(li(π)) for every i ∈ {0, 1, . . . }. πk = (lk(π), lk+1(π), . . . ), where k ∈ N, is used

to denote the suffix of π starting from index k. A proposition trace over an atomic proposition

set AP is defined as a sequence of set of atomic propositions, πp = (label0, label1, . . . ) such

that labeli ⊆ AP,∀i ∈ {0, 1, . . . }. A proposition trace πp = (label0, label1, . . . ) over AP is said

to be contained in Md if there exists a state trace π = (l0, l1, . . . ) in Md such that labeli =

label(li), ∀i ∈ {0, 1, . . . }, in which case πp is said to be associated with π.



www.manaraa.com

19

LTL temporal logic is a formalism for describing properties of sequences of states. Such

properties are expressed using temporal operators of the temporal logic which include:

• X (“next time”): it requires that a property hold in the next state of the state trace;

• U (“until”): it is used to combine two properties. The combined property holds if there is

a state on the state trace where the second property holds, and at every preceding state

on the trace, the first property holds;

• F (“eventually” or “in the future”): it requires that a property will hold at some future

state on the state trace;

• G (“always” or “globally”): it requires that a property holds at every state on the trace;

and

• B (“before”): it also combines two properties. It requires that if there is a state on the

state trace where the second property holds, then there exists a preceding state on the

trace where the first property holds.

We have the following relations among the above operators, where φ denotes a temporal logic

formula:

• Fφ ≡ trueUφ,

• Gφ ≡ ¬F¬φ, and

• φBg ≡ ¬(¬φUg).

So we can use X and U to express all the other temporal operators. LTL formulas are generated

by the following rules:

P1) if p ∈ AP , then p is a LTL formula;

P2) if φ1 and φ2 are LTL formulas, then so are ¬φ1 and φ1 ∧ φ2;

P3) if φ1 and φ2 are LTL formulas, then so are Xφ1 and φ1Uφ2.
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The semantics of LTL can be defined with respect to the infinite state traces in a state

transition graph Md = (Ld, δ, AP, label). For a LTL formula φ, we use the notation < Md, π >|=

f (resp., < Md, π >6|= f) to denote that f holds (resp., does not hold) along the infinite state

trace π in Md. The relation |= is defined inductively as follows:

1. ∀p ∈ AP, π |= p if and only if p ∈ label(l0(π)).

2. π |= ¬φ if and only if π 6|= φ.

3. π |= φ1 ∧ φ2 if and only if π |= φ1 and π |= φ2.

4. π |= Xφ if and only if π1 |= φ.

5. π |= φ1Uφ2 if and only if there exists a k such that πk |= φ2 and for all j ≤ k−1, πj |= φ1.

The semantics of LTL formulas can also be expressed over infinite length proposition traces

without referring to any specific state transition graph. This is done by replacing the first

condition shown previously with

∀p ∈ AP, πp = (label0, label1, . . . ) |= p⇔ p ∈ label0,

where πp is an infinite proposition trace over AP, i.e., labeli ⊆ AP for all i ≥ 0. While the

semantics of LTL are defined over infinite traces, it can also be extended to finite traces: A

finite trace (l0, . . . , ln) satisfies a LTL formula φ if and only if the infinite trace (l0, . . . , ln, ln, . . . )

satisfies φ [82].

Given a LTL formula φ, denote Sφ as the set of all infinitely long proposition traces over

AP satisfying φ. Then we can obtain a generalized nondeterministic Büchi automaton Tφ ([81])

that accepts Sφ. To construct Tφ, we first put φ into negation normal form, in which negation is

only applied at the atomic level. Then we rewrite each subformula of the form Fg as TrueUg.

Let |φ| be the number of subformulas of the form λUµ. Then the generalized nondeterministic

Büchi automaton has |φ| sets of accepting states and is of the form:

Tφ = (Lφ, 2
AP , δφ, l

φ
0 ,Lφ)

where
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• Lφ is the set of states;

• δφ : Lφ × 2AP → Lφ is the transition relation;

• lφ0 is the initial state, and

• Lφ ⊆ 2Lφ is the generalized Büchi acceptance condition, such that for each subformula of

the form λUµ in φ, there exists a L ∈ Lφ which is used to capture the fulfillment of λUµ.

When |Lφ| = 1, then the generalized Büchi automaton reduces to a standard one. An infinite

length proposition trace πp = (label1, label2, . . . ) over AP is accepted by Tφ if and only if there

exists an infinite length state trace π = (lφ0 , l1, . . . ) in Tφ such that li ∈ δf (li−1, labeli) for all

i ≥ 1, and π visits each set of locations in Lφ infinitely often. Then the set of all infinite length

proposition traces accepted by Tφ, called its ω-language, equals Sφ.

While every LTL formula can be characterized as the ω-language accepted by a nondeter-

ministic Büchi automaton, only certain fragments of LTL can be modeled as the ω-language

accepted by a deterministic Büchi automaton. In this dissertation we only consider prediag-

nosable LTL formulas (see Definition 5 in Chapter 4) that can be accepted by deterministic

Büchi automata.
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CHAPTER 3. FAILURE DIAGNOSIS OF STOCHASTIC DES

In this chapter, we present a detector for online fault detection of stochastic DESs, and show

that the S-Diagnosability property is a necessary and sufficient condition of the existence of

the aforementioned detector. Algorithms for computing detector parameters for given specified

performance requirements are also presented for both S-Diagnosable and non-S-Diagnosable,

while in the latter case the termination of the proposed algorithm is not guaranteed.

3.1 Online Detector and its Existence Condition

3.1.1 Computation of Likelihood of No-fault

When the system executes a trace s ∈ L, an observation o = M(s) is received by a fault

detector. In order to issue a “fault” decision versus no-decision for the observation o = M(s),

we propose the detector compute the likelihood of no-fault, and issue a “fault” decision if this

likelihood of no-fault is small (i.e., below a suitable threshold), and otherwise issue no-decision.

In this subsection we present how this likelihood can be recursively computed. With a slight

abuse of notation, we denote the no-fault likelihood function PN : M(L)→ [0, 1] and define it to

be the conditional probability of nonoccurrence of a fault following any observation o ∈M(L):

PN (o) := Pr(u ∈ K|M(u) = o) =
Pr(u ∈ K : M(u) = o)

Pr(u ∈ L : M(u) = o)
.

Note that PN (o) is the probability of nonfault traces conditioned by the fact that ambiguity

can only arise from the system traces that produce the observation o. In order to recursively

compute PN we proceed as follows. For a given refined plant GR whose state space is partitioned

into nonfault states versus fault states, we define a nonfault indication binary column vector

Inf ∈ {0, 1}|Y |×1, where an entry of 1 indicates a nonfault state. Also define state distribution

vector π : M(L) → [0, 1]1×|Y |, i.e., for each o ∈ M(L), π(o) is the state distribution of GR
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following the observation o. Then π(·) is recursively computed as follows: π(ε) = [1, 0, . . . , 0],

and for any o ∈M(L), δ ∈ ∆,

π(oδ) =
π(o)µ(δ)

||π(o)µ(δ)||
,

where µ(δ) is computed by solving matrix equations (2.1), and ‖ · ‖ is simply the sum of all

vector elements. Then for an observation o, PN (o) is simply given by

PN (o) = π(o)Inf ,

where note that π(o) and hence also PN (o) are recursively computed.

Example 4. In the system of Fig. 2.3, the indication vector is given as

Inf = [1, 1, 1, 0]T ,

and the state distribution vector is initialized as:

π(ε) = [1, 0, 0, 0].

If o = aba, then PN (o) = 0.783; if o = ababc, then PN (o) = 1; if o = abaa, then PN (o) = 0. �

3.1.2 Online Detection Scheme

For issuing online detection decision, we propose a detector, D : M(L) → {F, ε} that for

each observation in M(L) issues either a “fault (F )” decision or “no-decision (ε)” by comparing

the likelihood of no-fault to a suitable threshold, as follows:

∀o ∈M(L), [D(o) = F ]⇔ [∃o ≤ o : PN (o) ≤ ρD], (3.1)

where ρD is the detection threshold, appropriately chosen to meet the desired FA rate re-

quirement. Note by definition, if a detection decision is F , then it remains F for all future

observations, i.e., the detector “does not change its mind”, which is expected for the case of

permanent faults.

Remark 3. For given detector parameters, the detection scheme (3.1) requires solving (2.1)

offline for each δ ∈ ∆, and computing online the likelihood of no-fault upon the arrival of a



www.manaraa.com

24

new observation. The former has the complexity of O(|∆| × |X|3 × |Q|3 + |Σ| × |X|2 × |Q|2) ≤

O(|Σ| × |X|3× |Q|3), whereas the latter requires an O(|X|2× |Q|2) complexity. Since (2.1) can

be solved offline before the initialization of the online monitoring, the online detection has a

quadratic complexity. �

Note a false alarm occurs if the detector D issues F while the refined plant is in a nonfault

state; and dually a missed detection occurs if the detector D fails to issue a F decision within

an appropriate delay bound nD after the occurrence of a fault. In other words, letting PmdD

and P faD denote the MD and FA rates respectively of a detector D, then

PmdD := Pr(st ∈ L−K : s ∈ L−K, |t| ≥ nD, PN (M(st)) > ρD), (3.2)

P faD := Pr(s ∈ K : PN (M(s)) ≤ ρD). (3.3)

Example 5. For the refined plant of Fig. 2.3 which is S-Diagnosable, suppose we set the

threshold ρD = 0.8. Then any nonfault trace in a(bc+a)∗ba ⊂ K will be false-alarmed

(PN (ababa) = 0.783 < ρD), and thus,

P faD |ρD=0.8 = Pr(u ∈ a(bc+a)∗ba) = 47.37%.

On the other hand if we set ρD = 0.5, then any nonfault trace in a(bc+a)∗baba ⊂ K will be

false-alarmed (PN (ababa) = 0.488 < ρD), and thus,

P faD |ρD=0.5 = Pr(u ∈ a(bc+a)∗baba) = 4.26%.

Now supposing that 4.26% FA rate is acceptable, we fix the detection threshold ρD to 0.5. If

the detection delay bound is set to be nD = 3, then any fault trace s ∈ a(bc+a)∗fbab ∈ L−K

will be miss-detected and thus the MD rate is given by:

PmdD |ρD=0.5,nD=3 = 6.58%.

On the other hand if the detection delay bound is set to be nD = 4, then any fault trace

s ∈ L−K could be detected, i.e.,

PmdD |ρD=0.5,nD=4 = 0.

�
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3.1.3 Existence Condition

We begin by establishing in the following theorem, a property of non-p-equivalent irreducible

automata, that for any ambiguity level ρ and tolerance level τ , there must exist a bound n

such that the set of traces, of the first automaton, that are longer than the bound and are

ambiguous with the traces of the second automaton with ambiguity level higher than ρ, occur

with probability lower than τ . Note that s1 (resp. s2) denotes a trace generated in A1 (resp.

A2). The proof is given in Appendix A.

Theorem 1. Given two irreducible finite-state automata A1 and A2, where their initial state

distribution is the same as their stationary state distribution, if A1 and A2 are not p-equivalent,

then

(∀τ > 0 ∧ ∀ρ > 0)(∃n ∈ N)Pr(s1 : |s1| > n,Pr(s2|M(s1) = M(s2)) > ρ) < τ.

Following we present a new characterization of S-Diagnosability which states that the S-

Diagnosability is lost if and only if there exists an indistinguishable pair of fault and nonfault

traces such that all future observations have identical probability of being fault versus nonfault.

The correctness proof is given in the Appendix A.

Theorem 2. (L,K) is not S-Diagnosable if and only if:

(∃s ∈ L−K, s′ ∈ K s.t. M(s) = M(s′))(∀o ∈ ∆∗)

Pr(t : t ∈ L\s,M(t) = o) = Pr(t : t ∈ K\s′,M(t) = o). (3.4)

Remark 4. While the definition of S-Diagnosability applies to the set of fault traces L − K,

Theorem 2 is symmetric with respect to fault and nonfault traces, and thus suggests that

notion of diagnosability can also be defined for nonfault traces: s ∈ K is not diagnosable if

and only if there exists s′ ∈ L −K ∩M−1M(s) such that for all future observations o ∈ ∆∗,

Pr(M−1(o) ∩K\s) = Pr(M−1(o) ∩ L\s′). We denote the set of all non-diagnosable nonfault

traces as Knd ⊆ K. Clearly, for a S-Diagnosable system, Knd = ∅. �

Now we are ready to show the main result of this section, which provides insight into

the significance of the S-Diagnosability property for the purpose of online fault detection, by
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showing its necessity and sufficiency for the existence of an online detector that can achieve

any desired levels of MD and FA rates.

Theorem 3. (L,K) is S-Diagnosable if and only if for any FA rate requirement φ > 0 and MD

rate requirement τ > 0, there exist a detection threshold ρD > 0 and a delay bound nD such

that P faD ≤ φ and PmdD ≤ τ .

Proof. (Sufficiency) For a S-Diagnosable system (L,K), we need to show the existence of ρD

and nD for achieving given φ and τ .

For finding ρD, first we partition the set of nonfault traces into three sub-languages, i.e.,

K = K1∪K2∪K3, where K1 is the set possessing a fault extension (K1 = K ∩ pr(L−K)), K2

is the set with no fault extension and is non-diagnosable (K2 = Knd), and K3 = K −K1 −K2

is the set with no fault extension and is diagnosable. Note if (L,K) is diagnosable, then

K2 = Knd = ∅.

For the nonfault traces in K1 = K∩pr(L−K) that possess a fault extension, nonfaulty-ness

is a transient property, and so for any φ1 > 0 there exists m1 ∈ N such that the traces in K1 that

are longer than m1 occur with probability smaller than φ1. Denote ρ1 = mins∈K1,|s|≤m1
PN (s).

Since for a nonfault trace s, PN (s) > 0, and since the traces of length smaller than m1 are

finite, ρ1 > 0. By choosing ρD < ρ1 we can ensure that the detector issues a decision for only

the traces in K1 that are longer than m1. (For shorter traces, PN value will be larger than

ρ1 > ρD, and so no decision.) Since the probability of such traces is smaller than φ1, their FA

rate is also smaller than φ1.

For the nonfault traces in K2 that possess no fault extensions and are non-diagnosable, there

exists m2 ∈ N such that for every trace in K2 that is longer than m2, further extensions will

not change the PN value (i.e., PN will converge to a value smaller than 1; otherwise the traces

would be diagnosable). Denote ρ2 = mins∈K2,|s|≤m2
PN (s). Similar to ρ1, we have ρ2 > 0. By

choosing ρD < ρ2 we can ensure the detector issues no decision for traces in K2 and hence no

false alarm in K2.

For the nonfault traces in K3 that possess no fault extensions and are diagnosable, according

to Theorem 1, for any φ3 > 0 and ρ′3 ∈ (0, 1) there exists m3 ∈ N such that the traces
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longer than m3 and having PN value smaller than ρ′3 occur with probability smaller than

φ3. Denote ρ′′3 = mins∈K3,|s|≤m3
PN (s). Similar to ρ1 and ρ2, we have ρ′′3 > 0. By choosing

ρD < ρ3 = min(ρ′3, ρ
′′
3) we can ensure that the detector issues a decision only for those traces

in K3 that are longer than m3 and have PN value smaller than ρD < ρ′3. Since the probability

of such traces is smaller than φ3, their FA rate is smaller than φ3.

Therefore for any system (regardless whether or not it is S-Diagnosable), if we choose φ1

and φ3 in such a way that φ1 +φ3 ≤ φ and accordingly set ρD = mini={1,2,3} ρi, then the overall

FA rate will be given by:

P faD ≤ φ1 + φ3 ≤ φ.

Thus using our detection scheme, any FA rate can be achieved for any system (regardless of

whether or not it is S-Diagnosable), while as will be seen later, this is not the case for the MD

rate.

Next we need to establish the existence of nD to meet the MD rate requirement. Since the

system is S-Diagnosable, for any τ > 0 and ρD > 0 that guarantee FA rate, there always exists

nD ∈ N such that ∀s ∈ L−K,

Pr(t : t ∈ L\s, |t| ≥ nD, PN (st) > ρD) < τ. (3.5)

With such a choice of nD we have, PmdD (s) < τ , and so the overall MD rate is bounded by:

PmdD =
∑

s∈L−K
PrmdD (s)Pr(s) < τPr(L−K) ≤ τ.

Thus the sufficiency of Theorem 3 holds.

(Necessity) Suppose for a system (L,K), given any φ > 0 and τ > 0, there exist ρD and nD

such that P faD ≤ φ and PmdD ≤ τ . Letting SmdD = {st : s ∈ L −K, t ∈ L\s, |t| ≥ nD, PN (st) >

ρD} ⊆ L−K denote the set of fault traces that are miss-detected, we have PmdD = Pr(SmdD ) < τ .

Then for given s ∈ SmdD ⊆ L−K, we have

Pr(st : t ∈ L\s, |t| ≥ nD, PN (st) > ρD) < τ.
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Since the LHS is the same as Pr(s)Pr(t : t ∈ L\s, |t| ≥ nD, PN (st) > ρD), for any s ∈ SmdD , we

have:

Pr(t : t ∈ L\s, |t| ≥ nD, PN (st) > ρD) <
τ

Pr(s)
.

Let p = mins∈SmdD
Pr(s) and τ ′ = τ/p, then for any s ∈ SmdD , we have

Pr(t : t ∈ L\s, |t| ≥ nD, PN (st) > ρD) < τ ′.

Note τ can be chosen to be arbitrarily small to make τ ′ arbitrarily small. Furthermore for any

s ∈ (L−K)− SmdD , we have:

Pr(t : t ∈ L\s, |t| ≥ nD, PN (st) > ρD) = 0 < τ ′.

Then ∀s ∈ L−K,

Pr(t : t ∈ L\s, |t| ≥ nD, PN (st) > ρD) < τ ′. (3.6)

Since for any φ > 0 (and hence any ρD) and τ > 0 (and hence any τ ′ > 0), such nD always

exists to make the above analysis true, then for any ρD > 0 and τ ′ > 0, ∃nD ∈ N such that

(3.6) holds, which indicates the condition for S-Diagnosability is held. Thus the necessity of

Theorem 3 holds.

3.2 Computation of Detection Threshold and Delay

In previous section we established that S-Diagnosability is a necessary and sufficient con-

dition for the existence of a detection threshold ρD and a detection delay bound nD to achieve

any desired level of FA and MD rates. In the this section we provide algorithms for computing

the parameters ρD and nD so as to achieve the desired level of MD and FA rates.

3.2.1 Algorithms for ρD and nD

Given a S-Diagnosable system GR and FA and MD rates requirements φ and τ , we provide

the computation of detection threshold ρD and delay bound nD so that P faD ≤ φ and PmdD ≤ τ .

In order to compute detection threshold ρD for a given FA rate requirement φ, Algorithm
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1 constructs an “extended observer tree”, that for each observation sequence, estimates the

states (as any observer does), and organizes it in a tree form where nodes are observations

tagged with the estimated states and the edges are transitions on a next new observation, with

the extension that each state in the estimate is labeled by the probability of reaching it. The

construction of Algorithm 1 makes the “extended observation tree” formal. These probability

labels are then used to compute the probability PN for each observation, or equivalently, each

node of the extended observer tree. The tree extends to a depth so that if no detection decision

are made for any of the nodes (equivalently, corresponding observations) in the tree, then the

FA rate caused by the detection decisions at the future successors is upper bounded by the

desired rate φ. The existence of such a depth is guaranteed by Theorem 4, and to ensure no

detection decision for any of the nodes in T , we simply choose the detection threshold to be

smaller than the minimum PN value among all nodes of T (recall by (3.1) that a detection

decision is only issued when the PN value falls below the threshold).

Algorithm 1. For a given refined plant GR and a FA rate requirement φ, do the following:

1. This step is just a preparatory step to identify certain classes of states before beginning

to construct an extended observer tree. Identify all the states in X×Q from which a fault

state in GR is reachable, and denote this set of states as Y1 (these are nonfault states

from where fault states are reachable, and correspond to states reached by traces in K1

defined in the proof of Theorem 3). Identify Y2,3 = X ×Q−Y1 (these are nonfault states

reached by traces in K2 ∪K3 defined in the proof of Theorem 3).

2. Iteratively construct an extended observer tree T with set of nodes, Z = Z×M(L), where

Z = 2((X×Q)×(0,1]), and the depth of tree grows by 1 in each iteration until the stopping

criterion is satisfied—see below. Then each node of T is of the form z = (z, o(z)), where

o(z) ∈M(L) is a unique observation associated with the node z and z = {((xi, qi), pi)} ⊆

(X ×Q)× (0, 1] is set of state estimates, with the ith one denotes (xi, qi), tagged with its

occurrence probability pi. The tree T is rooted at z0 = {((0, 0), 1), ε}. z2 ∈ Z is a δ-child

(δ ∈ ∆ = M(Σ)−{ε}) of z1 ∈ Z if and only if o(z2) = o(z1)δ and for every ((x2, q2), p2) ∈

z2, it holds that p2 =
∑

((x1,q1),p1)∈z1
∑

s∈Σ∗:M(s)=δ p1 × γ((x1, q1), s, (x2, q2)). It can be
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seen that ((x2, q2), p2) is included in z2 if and only if (x2, q2) can be reached from a state

included in z1 following extra observation δ and p2 is the probability of reaching (x2, q2)

from initial state following the observation o(z2).

Using the probability values of states in any node z of T , we can compute the likelihood

of no-fault following the observation o(z), by way of adding the probabilities of the non-

fault states of the node, and next normalizing over all states of the node as follows:

∀z = (z, o(z)) : PN (z) :=

∑
((x,q),p)∈z,q 6=F p∑

((x,q),p)∈z p
.

Then PN (z) equals PN (o(z)), and corresponds to the conditional probability of no-fault

given the observation o(z).

Terminate the tree at a uniform depth so the set of leaf nodes Zm ⊆ Z satisfy:

• (z, z′ ∈ Zm)⇒ (|o(z)| = |o(z′)| =: d1) (each terminal node is reached after the same

number of observations, which guarantees the uniformity of the depth of T , which

we denote as d1), and

•
∑

z∈Zm
∑

((x,q),p)∈z:(x,q)∈Y1 p +
∑

z∈Zm:PN (z)≤ρmin

∑
((x,q),p)∈z:(x,q)∈Y2,3 p < φ, where

ρmin := minz∈Z:PN (z)6=0 PN (z) (for states in Y1 contained in terminal nodes, their

added probabilities of the first term equals Pr(K1 ∩ M−1(∆>d1)), which upper

bounds the FA rate of their successors (see proof of Theorem 3); for the states

in Y2,3 contained in the terminal nodes having PN ≤ ρmin, their added probabilities

of the second term equals Pr(s ∈ [K2 ∪ K3] ∩ M−1(∆>d1) : PN (M(s)) ≤ ρmin),

which upper bounds the FA rate of their successors (see proof of Theorem 3); we

require the combined upper bounds to be less that φ, which ensures that even if all

successors produce false alarm, the FA rate requirement is still met).

3. Return any ρD < ρmin. (Note that with this choice of ρD, all nonfault traces whose

observations are included in T will have no detection decisions (and so no false alarms

either), and only their extensions can have detection decisions (some of which may be

false alarms). But by construction, the probability of those extensions is upper bounded

by φ, as desired.)
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Figure 3.1 Part of an extended observer tree for Example 6.

The following theorem guarantees the correctness of Algorithm 1. Correctness proof is given

in the Appendix A.

Theorem 4. There exists d1 ∈ N such that Algorithm 1 terminates with tree depth d1 and

returns a threshold ρD under which the overall FA rate is upper bounded by φ.

Note as the tree depth is increased, the set of traces contained in the tree, and hence their

probability, also grows. Since no detection decision is issued for traces in the tree, they don’t

incur any false alarms, and hence the false alarm rate is upper bounded by the probability of

traces not included in the tree. By increasing the tree depth, we can essentially guarantee that

this upper bound is as small as desired.

Example 6. For the system GR shown in Fig. 2.3, Y1 = {(0, 0), (1, 1), (2, 2)} and Y2,3 = ∅. We

construct the extended observer tree for the computation of detection threshold; the first 4 steps

of which are as shown in Fig. 3.1, where PN (z0) = PN (z1) = 1, PN (z2) = 0.9474, PN (z3) = 0,

PN (z4) = 0.7826, PN (z5) = 1, PN (z6) = PN (z7) = PN (z8) = 0. Selecting any ρD <

minz∈Z:PN (z)6=0 PN (z) = 0.7826, the FA rate is upper bounded by
∑

z∈Zm
∑

((x,q),p)∈z:(x,q)∈Y1 p =

0.09 + 0.81 = 0.9. Algorithm 1 would proceed to a next step unless this FA rate is found to be

acceptable. �

Having provided an algorithm to compute the detection threshold ρD that meets the FA

rate requirement φ, we next present an algorithm to compute the delay bound nD to satisfy

the given MD rate requirement τ . Here we provide a brief outline of the algorithm: In order

to compute delay bound nD, Algorithm 2 constructs a refined version of the extended observer

tree that for each observation sequence estimates the states and their probabilities, with the
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refinement that keeps track of the number of post fault transitions executed for each state in the

estimated state set. The tree extends to a depth so that if no missed detections occur for any

of the nodes in the tree, then the MD rate caused by the future successors is upper bounded

by the desired rate τ . For S-Diagnosable systems, the existence of such a depth is guaranteed

by Theorem 5, and to ensure no missed detection for any of the nodes in T , we simply choose

nD to be greater than the maximum number of post fault transitions among all nodes of T .

Algorithm 2. For a given refined plant GR, a detection threshold ρD and a MD rate requirement

τ , do the following:

1. Iteratively construct a refined extended observer tree T with set of nodes, Z = Z×M(L),

where Z = 2((X×Q)×(0,1]×N) (N = {0, 1, 2, . . . }), and the depth of T grows by 1 in each

iteration until the stopping criterion is satisfied—see below. Similar to Algorithm 1, each

node of T is of the form z = (z, o(z)), where z = {((xi, qi), pi, ni)} ⊆ (X×Q)× (0, 1]×N,

o(z) ∈ M(L) and the additional term ni counts the number of post-fault transitions

in reaching (xi, qi). The tree T is rooted at z0 = {((0, 0), 1, 0), ε}. z2 ∈ Z is a δ-

child (δ ∈ ∆ = M(Σ) − {ε}) of z1 ∈ Z if and only if o(z2) = o(z1)δ, and for every

((x2, q2), p2, n2) ∈ z2, it holds that p2 =
∑

((x1,q1),p1,n1)∈z1∑
s∈Σ∗:M(s)=δ,#post-fault(s,(x1,q1))+n1=n2

p1×γ((x1, q1), s, (x2, q2)). Here “#post-fault” counts

the number of events in s beyond a fault as follows: if q1 = F , it returns the value |s|, and

otherwise it returns the number of transitions executed in s after a fault state is reached.

It can be seen that ((x2, q2), p2, n2) is included in z2 if and only if (x2, q2) can be reached

from a state included in z1 following extra observation δ, p2 is the probability of reaching

(x2, q2) from initial state following observation o(z2) and n2 is the number the post fault

transitions executed.

For each node z = (z, o(z)), define the likelihood of no-fault given the observation o(z)

as in Algorithm 1:

PN (z) :=

∑
((x,q),p,n)∈z,q 6=F p∑

((x,q),p,n)∈z p
.

Terminate a branch of the tree if a detection decision has been made (PN value smaller

than ρD), and terminate the rest of the tree at a uniform depth so the set of leaf nodes
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Zm ⊆ Z satisfy:

• PN (z) ≤ ρD (for these nodes detection decision can be issued, implying these nodes

will have no missed detections), or

•
∑

z∈Zm:PN (z)>ρD

∑
((x,q),p,n)∈z:(x,q)∈Y1∨q=F p < τ (for these nodes, no detection deci-

sion will be issued since PN (z) > ρD, and by the choice of nD in step 2 below there

is no missed detection yet; so their added probabilities upper bounds the MD rate

of their future successors, and the stopping criterion requires this to be below the

desired value τ).

2. Return any nD > max((x,q),p,n)∈z,z∈Z n, and let d2 denote the depth of tree T . Note that

with this choice of nD all fault traces, whose observations are included in T , are not

missed detection. So clearly that the MD rate PmdD is upper bounded by PmdD given by:

PmdD :=
∑

z∈Zm:PN (z)>ρD

∑
((x,q),p,n)∈z:(x,q)∈Y1∨q=F

p. (3.7)

The following theorem guarantees the correctness of Algorithm 2. Correctness proof is given

in the Appendix A.

Theorem 5. For S-Diagnosable systems, there exists d2 ∈ N such that Algorithm 2 terminates

with tree depth d2 and returns a delay bound nD under which the overall MD rate is upper

bounded by τ .

Note as before, as the tree depth is increased, the set of traces contained in the tree,

and hence their probability, also grows. For all traces included in the tree, S-Diagnosability

guarantees that a correct detection decision is issued within a bounded delay bound, and so

any missed detection can only occur for those traces not included in the tree. So the MD rate

is upper bounded by the probability of traces not included in the tree. By increasing the tree

depth, we can essentially guarantee that this upper bound is as small as desired, and then read

the detection delay of the traces included in the tree for which detection decision is made (i.e.,

whose PN values are smaller than the detection threshold).

Example 7. For the system GR in Fig. 2.3, and assuming detection threshold of ρD = 0.7825 as

determined in Example 6, we construct the refined extended observer tree for the computation
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Figure 3.2 Part of a refined extended observer tree for Example 7.

of delay bound; the first 5 steps of which are as shown in Fig. 3.2. Here PN (z0) = PN (z1) = 1,

PN (z2) = 0.9474, PN (z3) = 0, PN (z4) = 0.7826, PN (z5) = 0, PN (z6) = 1, PN (z7) = 0,

PN (z8) = 0.8265 and PN (z9) = PN (z10) = 1. The branches of z3 and z5 terminate since

the likelihood of no-fault is smaller than ρD = 0.7826, whereas the depth of the rest of the

tree is 5. With nD = 1 + max((x,q),p,n)∈z,z∈Z n = 4, the MD rate is upper bounded by PmdD =∑
z∈{z8,z9,z10}

∑
((x,q),p,n)∈z:(x,q)∈Y1 p = 0.081+0.0045+0.0125+0.081+0.729 = 0.908. Algorithm

2 would proceed to a next step unless this MD rate is found to be acceptable. �

Remark 5. Both Algorithm 1 and Algorithm 2 require the construction of an extended observer

(with depths d1 and d2 and branching degree at most |∆|) that can have O(|∆|d1) and O(|∆|d2)

nodes, respectively, and each node can have up to |X|×|Q| elements. Therefore the complexity

for offline computation for detection parameters ρD and nD is O(|X| × |Q| × |∆|d), where d =

max{d1, d2}. Note that d can depend on the system and specification models, the observation

mask, and the desired bounds on MD and FA rates, and is bounded. On the other hand, as

mentioned in Remark 3, the complexity of online monitoring is quadratic, O(|X|2 × |Q|2). �

3.2.2 Non-S-Diagnosable Systems

In the absence of S-Diagnosability, the termination of Algorithm 2 is not guaranteed, but a

slight modification yields a terminating algorithm that finds an upper bound for the minimum

achievable MD rate. In the case when the system is not S-Diagnosable, then (3.5) in the proof

for Theorem 3 may not hold for some s ∈ L − K. For given φ and τ , let ρD be chosen so
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that P faD ≤ φ, and let SndD ⊆ L−K be the set of non-diagnosable fault traces for which there

exists a MD rate τ ′ > 0 such that the condition PrmdD (SndD ) = Pr(st : s ∈ SndD , t ∈ L\s, |t| ≥

nD, PN (st) > ρD) < τ ′ is not satisfied by any nD ∈ N. Then for the traces in (L −K) − SndD

there exists a detection delay bound nD so that ∀s ∈ (L−K)− SndD ,

Pr(t : t ∈ L\s, |t| ≥ nD, PN (st) > ρD) < τ ′,

and so the overall MD rate is upper bounded by:

PmdD =
∑

s∈L−K
PrmdD (s)Pr(s) < τ ′Pr(L−K − SndD ) + PrmdD (SndD ) ≤ τ ′ + PrmdD (SndD ).

Thus for non-S-Diagnosable systems, while any desired FA rate φ > 0 can be always achieved

by an appropriate choice of ρD > 0, a MD rate τ > 0 can only be achieved if τ ′+PrmdD (SndD ) ≤ τ .

Since nD can be chosen to make τ ′ arbitrarily small, a MD rate τ > 0 can be achieved if and

only if PrmdD (SndD ) < τ . This is captured in the following theorem, which generalizes Theorem

3 to the case of non-S-Diagnosable systems.

Theorem 6. Given a stochastic, nonfault specification-refined plant GR with generated language

L and nonfault behavior K, FA rate requirement φ > 0 and MD rate requirement τ > 0, there

exists a detection threshold ρD > 0 such that P faD ≤ φ, and for this detection threshold there

exists a detection delay bound nD such that PmdD ≤ τ if and only if PrmdD (SndD ) ≤ τ , where

SndD ⊆ L−K is the set of non-diagnosable fault traces for which there exists τ ′ > 0 such that

the condition Pr(st : s ∈ SndD , t ∈ L\s, |t| ≥ nD, PN (st) > ρD) < τ ′ is not satisfied by any

nD ∈ N.

Remark 6. For a fixed FA rate, PrmdD (SndD ) is also fixed and serves as a lower bound for MD

rate that the detection scheme can achieve. Note that PrmdD (SndD ) is a function of the FA rate

requirement φ. When φ is made tighter by decreasing it, a smaller ρD is needed, and the

resulting non-diagnosable fault traces subsume those corresponding to larger ρD. Therefore

the minimum achievable MD rate increases as FA rate is made stringent by decreasing it. �

Next we present a variant of Algorithm 2 that for a fixed threshold ρD computes an upper

bound for PrmdD (SndD ). Algorithm 3 iteratively builds a refined extended observer tree T , and at

each step computes an upper bound for the MD rate that either decreases or remains constant
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from one iteration to the next. When the latter happens, a future iteration may eventually

decrease the bound, but since the optimal (least) upper bound is unknown, it is also not known

how long one should continue iterating. So, to ensure termination, we adopt the heuristics of

terminating the algorithm when the upper bound continues to remain constant while nD gets

doubled.

Algorithm 3. For a given refined plant GR and a threshold ρD, do the following:

1. Iteratively construct a refined extended observer tree T as in the step 1 of Algorithm 2;

2. For each depth of the tree T , set nD = 1 + max((x,q),p,n)∈z,z∈Z n and compute an upper

bound PmdD for MD rate PmdD according to (3.7);

3. If the upper bound PmdD doesn’t decrease while nD computed in step 2 gets doubled over

any two iteration steps (not necessarily consecutive), stop and return this upper bound.

3.3 Illustrative Example

We consider the problem of leakage detection in a two-tank system as shown in Fig. 3.3,

which is adopted from [86]. The tanks are connected with a valve. The water is pumped

into the system in the left tank at a constant rate and outflows from the right tank. The only

observation produced by this system is the symbolic sensor output (Low, Medium, High) which

measures the outflow rate of the right tank at discrete times. There is a 0.05 probability that a

leakage occurs in the left tank, which is to be detected. The aforementioned system is described

by the stochastic automaton shown in Fig. 3.4(a), where the event set is Σ = {L,M,H, leak},

corresponding to the sensor outputs and the occurrence of leakage. All events except “leak”

are fully observable, whereas “leak” is fully unobservable, i.e., Σuo = {leak}. The water

levels in the tanks are quantized into “LOW”, “MEDIUM” and “HIGH” for the left tank,

and just “LOW” and “HIGH” for the right tank, and each state in the stochastic automaton

denotes a combination of these water levels along with a record whether a leak occurred in past,

summarized in Fig. 3.4(b). The system is initialized at state 2, i.e., medium level of water in

the left tank and low level of water in the right tank. The states {1, . . . , 6} are pre-fault states
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Figure 3.3 Two-tank system.

and states {i+ 6, i = 1, . . . , 6} are post-fault states, and so the nonfault specification is simply

a subautomaton of the plant automaton restricted to the pre-fault states, and without the

probability labels. The possibility of occurrence of leakage at each pre-fault state i, i = 1, . . . , 6,

is captured by the transition from state i to state i + 6 labeled with the event “leak” and

occurrence probability 0.05. The transitions are obtained by way of abstraction, and for further

details readers are referred to [86, 87, 88]. It can be checked that the system is S-Diagnosable,

so Theorem 3-5 apply.

We implement the proposed Algorithms 1 and 2 to compute the detection threshold ρD

and delay bound nD to ensure any given FA and MD rate requirements. The results are shown

in Tables 3.1-3.2 and Fig. 3.5. Table 3.1 lists for various FA rates the detection threshold

ρD returned by Algorithm 1, as well as the tree depth d1, the number of tree nodes and the

running time of the implementation of Algorithm 1 on a standard desktop PC; and the first two

columns is plotted in Fig. 3.5(a). For example, when the FA rate is required to be under 5%,

the detection threshold returned by Algorithm 1 is ρD = 0.044. When we fix ρD = 0.044, i.e.,

fix φ = 5%, the delay bound nD returned by Algorithm 2 for various MD rates is shown in Table

3.2 and Fig. 3.5(b); the table additionally lists for each MD rate the tree depth d2, the number

of tree nodes and the running time of the implementation of Algorithm 2 on a standard desktop

PC. As can be seen, when the MD rate is required to be under 5%, the detection delay bound

returned by Algorithm 2 is nD = 60. If we wish to decrease the detection delay bound, then
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Figure 3.4 (a) Stochastic automaton G for the two-tank system shown in Fig. 3.3; (b) inter-
pretation of states.

the upper bound for the MD rate will increase and possibly violate the MD rate requirement

of 5%. For example if we choose nD = 55, then it could only be assured that the MD rate

is upper bounded by 36.24%. Recall by previous discussion, the delay bound can depend on

both FA rate φ and MD rate τ , and this dependency is shown in Fig. 3.5(c). This figure along

with Fig. 3.5(a) can be used to determine the parameters ρD and nD for the specified FA and

MD rates for the two-tank example. It so happens that for nD = 59, the upper bound given

by (3.7) is higher than 35%, whereas it suddenly becomes lower than 5% for nD = 60. This

sudden drop in upper bound explains the reason why the tree depth saturates at 60 when MD

rate is decreased from 35% to 5%.
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FA rate Threshold Tree depth # of Running

φ ρD d1 nodes time (sec.)

0.95 0.8717 2 7 0.004

0.9 0.8004 3 14 0.007

0.85 0.7473 4 25 0.016

0.8 0.7051 5 41 0.019

0.75 0.6682 6 63 0.028

0.7 0.6343 7 92 0.048

0.65 0.5722 9 175 0.074

0.6 0.5436 10 231 0.097

0.55 0.4906 12 377 0.158

0.5 0.4428 14 575 0.249

0.45 0.3996 16 833 0.383

0.4 0.3606 18 1159 0.558

0.35 0.3092 21 1793 0.984

0.3 0.2651 24 2625 1.582

0.25 0.2159 28 4089 2.908

0.2 0.1759 32 6017 5.211

0.15 0.1361 37 9177 10.64

0.1 0.0903 45 16261 32.94

0.05 0.0440 59 36050 182.3

Table 3.1 Computational results of Algorithm 1.

3.4 Conclusion

In this Chapter, the problem of online fault diagnosis for stochastic DESs was studied.

An online detector based on recursive likelihood computation was proposed, whose existence

for achieving any arbitrary performance requirement was shown to be equivalent to the S-

Diagnosability property. Algorithms for computing the detector parameters of detection thresh-

old and delay bound so as to achieve a given performance requirement of false alarm and missed

detection rates were presented, using a proposed procedure for constructing an extended ob-

server. The extended observer computes, for each observation sequence, the set of states reached

in the system model, along with their probabilities and the number of post-fault transitions

executed. The algorithms were guaranteed to terminate and upper bounds on the number of

iterations prior to termination were provided.
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MD rate Delay Tree depth # of Running

τ nD d2 nodes time (sec.)

0.95 4 4 21 0.018

0.9 5 5 31 0.029

0.85 7 7 57 0.052

0.8 9 9 91 0.084

0.75 11 11 133 0.126

0.7 14 14 211 0.217

0.65 16 16 273 0.299

0.6 19 19 381 0.436

0.55 23 23 553 0.688

0.5 28 28 813 1.150

0.45 34 34 1191 1.828

0.4 43 43 1893 3.356

0.35 60 60 3661 8.068

0.3 60 60 3661 8.056

0.25 60 60 3661 8.114

0.2 60 60 3661 8.060

0.15 60 60 3661 8.038

0.1 60 60 3661 8.027

0.05 60 60 3661 8.028

Table 3.2 Computational results of Algorithm 2 with ρD = 0.044.

The detector has a quadratic complexity for the online monitoring, likelihood computation

and issuing decision upon the arrival of a new observation, while the offline computation of

the detector parameters, namely, detection threshold and delay bound requires constructing

an extended observer whose size is exponential in the depth of the observer tree constructed,

while the depth of the tree is a complex function of the system and specification models, the

observation mask, and the desired bounds on MD and FA rates, and is bounded. As can be

inferred by the illustrative example in previous sub-section, the detector parameters of detection

threshold and delay bound for various levels of MD and FA rates can be computed offline and

stored in a database, and during online monitoring and detection the required set of parameters

can be looked up each time a new level of MD and FA rates are specified.

It was also shown that our detection strategy works for S-Diagnosable as well as non-S-

Diagnosable systems in the same manner. For S-Diagnosable systems it is possible to achieve
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Figure 3.5 Computational results of Algorithms 1 and 2 for leakage detection in two-tank
system: (a) the detection threshold ρD as a function of φ; (b) the delay bound nD
as a function of τ , when ρD = 0.044 (φ = 5%); (c) nD as a function of both φ and
τ .

arbitrary performance for FA and MD rates, while for a non-S-Diagnosable system an arbitrary

performance is achievable only for the FA rate, whereas a lower bound exists for the achievable

MD rate that is a function of the FA rate, and increases as FA rate is decreased. A variant of

the algorithm for the S-Diagnosable case was used to compute an upper bound for the minimum

achievable missed detection rate for a non-S-Diagnosable system.
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CHAPTER 4. FAILURE DIAGNOSIS OF HYBRID SYSTEMS

This chapter studies the fault detection of discrete-time stochastic systems with linear-time

temporal logic (LTL) as correctness requirement—A fault is a violation of the LTL specifica-

tion. The temporal logic allows the system correctness properties to be specified compactly and

in an user-friendly manner (being close to natural-languages), and supports automatic trans-

lation into other formal models such as automata. We introduce the notion of input-output

stochastic hybrid automaton (I/O-SHA) and show that a continuous physical system (modeled

as stochastic difference equations) when refined against a certain class of LTL correctness re-

quirement, the refinement can be modeled as an I/O-SHA, which preserves the behaviors of the

physical system and also captures the requirement-violation as a reachability property. The

probability distribution over the discrete locations of the hybrid system is estimated recursively

by computing the distributions for continuous variables for each discrete location. This is then

used to compute the likelihood of no-fault, a statistic that we employ for the purpose of fault

detection. The performance of the detection scheme is measured in terms of false alarm (FA)

and missed detection (MD) rates, and the condition for the existence of a detector to achieve

any desired rates of FA and MD is captured in form of Stochastic-Diagnosability, a notion

that we introduce for stochastic hybrid systems. The proposed method of fault detection is

illustrated by a practical example.

4.1 Problem Formulation

Suppose the dynamics of a physical system G under diagnosis can be described by the

discrete-time stochastic difference equations (4.1)-(4.3):

xk+1 = f(xk, uk, vk) (4.1)
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rk = g(xk, uk) (4.2)

yk = h(xk, uk, wk). (4.3)

where u, x, r, y, v, w represent, respectively, the input, state, requirement (unobserved), output

(observed), disturbance and noise variables, and k is the time-index. The initial state x0, the

disturbance vk as well as the noise wk are all assumed mutually i.i.d. with known distributions.

Note the requirement variable, which specifies a required value for each input-state pair through

the function g, is used to capture a user-defined specification that, at each step, depends on

system state and input, and being a user-defined requirement, it is not corrupted by noise.

We assume that the properties of the required system behaviors can be described by using a

LTL formula φ involving predicates defined over the requirement variables rk, k ∈ N . Then

the predicates, appearing in the LTL formula, and their boolean combinations act as atomic

propositions guarding the transitions in the Büchi automaton. The set of all infinitely long

feasible sequences of aforementioned predicates is denoted as AG.

Since detection of requirement-violation must occur based on a finite history of input/output

observations, it is natural to assume that every infinite run of a system, that violates the given

LTL formula, possesses a finite prefix, called an indicator, such that all its infinite extensions

that are feasible in the system also violate the LTL formula. This property was captured under

the name of prediagnosability in [49], and is a necessary condition for any detector’s ability

to detect the violation of the specified LTL formula based on finite ength observations. So,

without loss of generality, we assume that the prediagnosability holds. Next we provide a

formal definition of indicator and also of prediagnosability.

Definition 5. Given a system G and a LTL formula φ, a finite sequence of requirement variables

is said to be an indicator if all of its infinite extensions in G violate φ. We denote the set of all

indicators as Iφ(G). G is said to be prediagnosable with respect to φ if each infinite sequence

of requirement variables violating φ possesses a finite prefix that is an indicator.

Remark 7. By utilizing the notion of indicator, detecting the occurrence of infinite trace violat-

ing a LTL formula is transformed into detecting the execution of finite indicators. As mentioned

in [49], when an indicator is executed, the actual fault may not have happened yet. Hence,
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our framework includes both cases of fault detection (that a fault has already occurred) and

prediction (that a fault will inevitably occur). Note that the notion of indicator has also been

utilized for the purpose of fault prognosis (see for example [75, 77]), where the prediction of a

future fault is performed by detecting the occurrence of a nonfault prefix indicator. �

Remark 8. Note that a system is automatically prediagnosable if the correctness requirement

φ is a safety one [81], i.e., it only requires that some “bad” things must never occur. However,

when the correctness requirement is a more general one, the system may not be prediagnosable

(See Example 8), in which case, the violation of φ can not be detected even if the system is

perfectly observable, i.e., yk = rk for all k ∈ N. By this reason, we assume without loss of

generality that the system is prediagnosable with respect to the LTL formula. �

As established in [49, Theorem 1], the prediagnosability of system G with respect to a LTL

formula φ, is equivalent to the existence of a deterministic Büchi automaton accepting Sφ∩AG,

which can also be characterized as the limits of the finite prefixes accepted by the same model

treated as a standard finite state automaton. Then we can augment the Büchi automaton, by

adding an absorbing state called F reaching which indicates the execution of an indicator, to

yield an augmented deterministic requirement model, denoted as R. (Note the augmentation

requires adding the “missing” transitions from each state to the newly added fault state F ,

guarded by the complement of the existing transitions of the state.)

Example 8. Consider a system G with dynamics:

xk+1 = xk + vk

rk = 2xk − 1

where vk is i.i.d. Gaussian random variable. Suppose the LTL formula is given as φ = GF (r <

0), i.e., it is always (G) possible that in future (F), the requirement variable becomes negative.

Then it can be verified (see Fig. 4.1(a)) that for any infinite sequence (r0, r1, . . . , rm, . . . ) with

ri ≥ 0,∀i ≥ m (i.e., a sequence violating φ), any of its prefix has certain infinite extension in

which (rk < 0) is satisfied for infinitely many k (i.e., a sequence satisfying φ). Therefore G is

not prediagnosable with respect to φ. In this case even with perfect observation yk = rk, the

violation of φ cannot be detected.
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Figure 4.1 The specification model R for Example 8.

Now consider the disturbance to be vk = sign(xk)v
′
k, where v′k is a positive-valued ran-

dom variable, i.e., the noise vk is dependent on the state variable xk and is negative (resp.,

positive) if xk is negative (resp., positive). As a result, the sequence (x0, x1, . . . ), and also

(r0, r1, . . . ), are monotonically increasing (resp., decreasing) if x0 is positive (resp., negative).

Consider again the LTL formula φ = GF (r < 0). Then in this case, for every infinite sequence

(r0, r1, . . . , rm, . . . ) with ri ≥ 0,∀i ≥ m (i.e., a sequence violating φ), there exists a finite prefix

(r0, . . . , rk) with rk ≥ 0 (so that xk = (rk+1)/2 ≥ 0.5) whose all infinite extensions also violate

φ. Then G is prediagnosable with respect to GF (r < 0). In this case the Büchi automaton

accepting Sφ∩AG is given in Fig 4.1(b), where Lφ = {l1}, i.e., Sφ∩AG is the limits of (r < 0)∗.

The requirement model R is shown in Fig. 4.1(c), where the system behaviors satisfying φ visit

l1 infinitely often while those violating φ are absorbed at F . �

4.2 Approach to Detection Problem

Consider the detection structure of Fig. 4.2, where the monitored physical system G evolves

according to stochastic difference equations (4.1)-(4.3), and the requirement model R tracks

its own discrete location as the requirements variable rk evolves. At any given time, the

true state of the requirement model R is not available to the detector and must be estimated
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from the observed history of inputs and outputs. We transform this problem of estimating

requirement-violation to fault-location reachability estimation in an input-output stochastic

hybrid automaton (I/O-SHA) model that captures the behaviors of both G and R in a unified

manner.

Figure 4.2 The detection structure.

We first introduce the notion of an I/O-SHA, extending that of a logical input-output hybrid

automaton (I/O-HA) given in [72].

4.2.1 Input-Output Stochastic Hybrid Automaton

Definition 6. An input-output stochastic hybrid automaton (I/O-SHA) is a 10-tuple P =

(L,D,U, Y,Σ,∆, `0, d0, Lm, E), where

• L is the set of locations (symbolic states), and each l ∈ L is a 3-tuple l = (Gl, fl, hl),

where

– Gl : D × U → [0, 1] is the location invariant probability satisfying (4.4) below,

– fl : D×U ×D → [0, 1] assigns for each (d, u) ∈ D×U a probability density function

fl(·|d, u) on the data space D, and

– hl : D×U ×Y → [0, 1] assigns for each (d, u) ∈ D×U a probability density function

hl(·|d, u) on the output space Y .

• D = D1× · · ·×Dn ⊆ Rn is the set of data (numerical states), and hence the hybrid state

space of P is given by L×D,

• U = U1 × · · · × Um ⊆ Rm is the set of numerical inputs,

• Y = Y1 × · · · × Yp ⊆ Rp is the set of numerical outputs,
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• Σ is the set of symbolic inputs,

• ∆ is the set of symbolic outputs,

• `0 : L→ [0, 1] is the initial probability distribution for the locations,

• d0 : D → [0, 1] is the initial probability distribution for the data values,

• Lm ⊆ L is the set of final locations,

• E is the set of edges (transitions), and each e ∈ E is a 7-tuple e = (oe, te, σe, δe, Ge, fe, he),

where

– oe ∈ L is the original location,

– te ∈ L is the terminal location,

– σe ∈ Σ ∪ {ε} is the symbolic input,

– δe ∈ ∆ ∪ {ε} is the symbolic output,

– Ge : D × U → [0, 1] is the guard probability satisfying (4.4) below,

– fe : D×U×D → [0, 1] assigns for each (d, u) ∈ D×U a probability density function

fe(·|d, u) on the data space D,

– he : D×U×Y → [0, 1] assigns for each (d, u) ∈ D×U a probability density function

he(·|d, u) on the output space Y .

Remark 9. In Definition 6, Gl and Ge, where l ∈ L, e ∈ E, capture the probabilities that

an I/O-SHA stays in the current location l or executes a transition e, and so it satisfies the

following stochasticity constraint:

∀(d, u) ∈ D × U, σ ∈ Σ ∪ {ε}, Gl(d, u) +
∑

e∈E:σe=σ

Ge(d, u) ≤ 1. (4.4)

Note that in certain special setting, the range space of Gl and Ge can simply be the binary set

{0, 1} [72], i.e., given any (d, u), an I/O-SHA will either stay at current location, or execute one

transition, with probability 1. Then the guard/invariant can be equivalently written as logical

predicates, Gl := {(d, u) : Gl(d, u) = 1} ⊆ D × U and Ge := {(d, u) : Ge(d, u) = 1} ⊆ D × U .
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Since in this dissertation, we consider refinement of discrete-time stochastic systems against

their logical LTL formula, only logical guards/invariants are needed in the refined I/O-SHA

models. �

An I/O-SHA P starts from an initial distribution `0 over L and an initial distribution d0 over

D. At each time step, given a current location l, current data value d and input value u, upon

the arrival of a symbolic input σ ∈ Σ ∪ {ε}, P evolves either within the current location with

probability Gl(d, u) or executes an outgoing edge e such that σe = σ with probability Ge(d, u).

In the former case, it updates the data variable d according to the distribution fl(·|d, u), and

the output variable y is assigned a value according to the distribution hl(·|d, u). In the latter

case, the distributions fe(·|d, u) and he(·|d, u) are used for updating d and y, and a symbolic

output δe is emitted.

Remark 10. In [63, 66], the authors proposed discrete time stochastic hybrid systems (DTSHS),

which includes hybrid state/control space. The I/O-SHA model introduced here is more general

than the DTSHS model: state variables of a DTSHS are fully observed, whereas the data

variables of an I/O-SHA are only partially and unreliably observed. The notion of I/O-SHA

can also be utilized to model cyber-physical systems [89, 90] where a cyber (discrete) component

interacts with a physical (continuous) component. �

Next we present the refinement of a system against its LTL formula. Given a physical

system G with dynamics described by (4.1)-(4.3) and the requirement model R, the refinement

is modeled by an I/O-SHA GR, where

• L is given by the state space of R, l0 = δ(lφ0 ) where δ is the Dirac delta function, d0 is

the initial distribution of x0, and Lm = {F},

• D,U, Y are given by the state/input/output space of G, respectively, and Σ = ∆ = ∅,

• the discrete transition structure of GR is preserved from that of R,

• for each location l ∈ L,

– location invariant Gl is given by Gl = {(d, u) : g(d, u) violates the predicates over

each outgoing transition from l in R},
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– probability density functions fl(·|d, u) and hl(·|d, u) for data updates and output

assignments are determined by the distributions of vk and wk, together with the

functions f and h of G,

• for each e = (l, l′, σe, δe, Ge, fe, he), e is a transition of GR (i.e., e ∈ E), if and only if,

– there exists a transition from l to l′ in R, and

– Ge = {(d, u) : g(d, u) satisfies the predicates over the above transition of R}, and

– σe = δe = ε, fe(dr|d, u) = δ(dr− d), and he(·|d, u) is the identity function that keeps

the output values unchanged on discrete transitions.

Remark 11. The refinement GR captures the behaviors of both G and R in an unified manner

such that, any system run associated with an indicator, transitions GR to the fault-location

Lm = {F}. �

4.2.2 State Estimation for I/O-SHA

In order to aid the estimation of fault location reachability, we present the stochastic filtering

equations to recursively estimate the state distributions of I/O-SHA. Denote the history of

observed inputs/outputs up to a time k as uk = (u0, . . . , uk), y
k = (y0, . . . , yk) and let zk =

(yk, uk). Define πk+1(·|zk) : L→ [0, 1] as:

∀l ∈ L, πk+1(l|zk) := Pr(lk+1 = l|zk),

which is the conditional probability distribution over the discrete locations given the observa-

tions until time k. We further define two probability distribution functions over continuous

variables of an I/O-SHA. The first one is the prior distribution pk|k−1(·|zk−1, lk) : D → [0, 1]

given by:

∀lk ∈ L, d ∈ D, pk|k−1(d|zk−1, lk) := pdk|zk−1,lk
(d|zk−1, lk),

which is the probability density function over continuous variables at time k, given zk−1 (i.e.,

prior to the input/output at time k) and lk (the discrete location at time k). The second one
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is the posterior distribution pk|k(·|zk, lk) : D → [0, 1] given by:

∀lk ∈ L, d ∈ D, pk|k(d|zk, lk) := pd|zk,lk(dk|zk, lk),

which is the probability density function over continuous variables at time k, given zk (i.e.,

post to the input/output at time k) and lk (the discrete location at time k).

The following equations (4.5)-(4.9) initialize and recursively update the state distributions

πk, pk|k and pk+1|k for an I/O-SHA upon the arrival of the kth input/output pair. The detailed

derivations of (4.7)-(4.9) are given in Appendix B. For each l ∈ L, d ∈ D:

π0(l|z−1) = l0(l) (4.5)

p0|0(d0|z0, l) = d0(d′0) (4.6)

pk|k(d|zk, lk) =
hlk(yk|d, uk)pk|k−1(d|zk−1, lk)∫

D hlk(yk|dk, uk)pk|k−1(dk|zk−1, lk)d(dk)
(4.7)

πk+1(l|zk) =
∑
lk∈L

πk(lk|zk−1)×
∫
D(lk→l|uk)

pk|k(dk|zk, lk)d(dk) (4.8)

pk+1|k(d|zk, lk+1) =
1

πk+1(lk+1|zk)
∑
lk

πk(lk|zk−1)

×
∫
D(lk→lk+1|uk)

flk+1
(d|dk, uk)pk|k(dk|zk, lk)d(dk), (4.9)

where D(li → lj |ui) ⊆ D for each li, lj and ui is defined as D(li → lj |ui) := {di ∈ D : ∃e ∈

E, oe = li, te = lj , (ui, di) ∈ Ge}, i.e., it is the set of data values that enable the edge from li to

lj while the input is ui.

4.2.3 Detection Statistics and Detection Scheme

Now that we have computed the state probability distributions given the input/output

sequence up to a current time k, we can use this to compute the likelihood of no-fault, which

is the probability of the refinement GR being outside of the fault-location Lm = {F}, and is

given by:

P kN :=
∑
l 6∈Lm

πk+1(l|zk). (4.10)

Note P kN can be found by first computing πk, which in turn is computed by the filter (4.5)-

(4.9). A detector issues a fault decision “F” whenever this likelihood of no-fault is lower than a
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threshold, i.e., when P kN ≤ ρ, and remains silent otherwise. The detector D : (U×Y )N → {F, ε}

is formally defined as:

∀zk ∈ (U × Y )N, [D(zk) = F ]⇔ [∃j ≤ k, P jN ≤ ρ]. (4.11)

Note that once the detector issues F , it issues F for all subsequent steps, i.e., the detector

“doesn’t change its mind”.

Remark 12. Note that while we only consider discrete-time stochastic systems with single mode

of dynamics, the framework can be straightforwardly extended to the case where the system

under diagnosis is itself an I/O-SHA. In this case, the locations of the refinement GR are

given by the location-pairs of G and R, and the guards/invariants are given by intersections of

guards/invariants in G and R. The detection algorithm (4.5)-(4.11) continues to apply to this

more general setting where G itself is an I/O-SHA. �

Remark 13. In this chapter, we consider a fault to be a violation of certain correctness re-

quirement expressed as linear-time temporal logic (LTL) formulas. As studied in literature

[11, 42, 91, 92, 93, 94], a fault may be modeled as a change in system dynamics. We can sub-

sume this situation in our framework by considering the refinement GR in which the probability

density functions fl(·|d, u) for location l = F undergoes a dynamics change due to the occur-

rence of fault. Then the fault detection problem is again reduced to fault-location reachability

detection problem for GR, which can be solved by our proposed algorithm (4.5)-(4.11). �

4.3 Illustrative Example: A Room-Heating Problem

In this section we present the results for fault detection computations presented above by

applying to a room heating benchmark, which aims to regulate the temperature in a single

room with a single heater, and is inspired from [62, 95]. Let the continuous variable xk present

the room temperature at time k, and the binary variable uk denote the status of the heater,

with uk = 1 if the heater is on at time k and 0 otherwise. The room temperature xk is assumed

to evolve according to the linear stochastic difference equation:

xk+1 = xk + a(xa − xk) + buk + vk,
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Figure 4.3 The requirement model R for single room heating problem.

and the requirement and output variables are given by:

rk =

 uk

xk

 ,
yk = xk + wk,

where xa is the (constant) ambient temperature, and the disturbance vk and the noise wk are

zero mean Gaussian random variables with variances σ2
v and σ2

w, respectively.

For safety purposes, it is required that the room temperature satisfies xl ≤ xk ≤ xh for

all k. It is also required that the room temperature is guaranteed to be higher than xw in

at most 2 steps after the heater is turned on. Note xh > xw > xl are constants, specified by

user/designer. Such correctness requirement can be expressed as LTL formula φ:

φ = G[{xl < r(2) < xh} ∧ {(r(1) = 1)⇒ (r(2) > xw) ∨X(r(2) > xw) ∨XX(r(2) > xw)}].

(4.12)

It can be verified that the aforementioned system is prediagnosable with respect to φ, and the

requirement model R is shown in Fig. 4.3, which has four states and 9 edges, while reaching

the state F indicates the violation of formula (4.12).

The refinement GR is such that L = {l0, l1, l2, F}, U = {0, 1}, D = X = Y = R, l0 = δ(l0),

d0 = δ(x0), Lm = {F} and the edges are as shown in Fig. 4.3. For each l ∈ L,

fl(·|d, u) = N (·|d+ a(xa − d) + bu, σ2
v), and

hl(·|d, u) = N (·|d, σ2
w),
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whereN (·|µ, σ2) denotes Gaussian distribution with mean µ and variance σ2. For each lj , lj ∈ L

and u ∈ U , D(li → lj |u) can be easily computed and is shown in Table 4.1.

D(l0 → l0|u = 0) (xl, xh)

D(l0 → l0|u = 1) (xw, xh)

D(l0 → l1|u = 1) (xl, xw]

D(l1 → l0|u ∈ {0, 1}) (xw, xh)

D(l1 → l2|u ∈ {0, 1}) (xl, xw]

D(l2 → l0|u ∈ {0, 1}) (xw, xh)

D(l0 → F |u ∈ {0, 1}) (−∞, xl] ∪ [xh,∞)

D(l1 → F |u ∈ {0, 1}) (−∞, xl] ∪ [xh,∞)

D(l2 → F |u ∈ {0, 1}) (−∞, xw] ∪ [xh,∞)

D(F → F |u ∈ {0, 1}) (−∞,∞)

Others ∅

Table 4.1 List of D(li → lj |u).

For the computational study, we set xa = 70, a = 0.1, b = 3, σ2
v = σ2

w = 0.4, and suppose

the system is initialized at x0 = 80 and l0. Note that with these selection of parameters, the

system is stable. Suppose the specification parameters are xl = 70, xh = 90 and xw = 80. For

simulation, the continuous space is discretized by a grid size of 0.1 over the range [65, 100]. The

input is such that the heater switches between on and off at each discrete time.

A total of 5000 runs, with terminal time T = 200, were simulated, out of which there

were 457 runs violating the correctness requirement. We implemented the detection algorithm

(4.5)-(4.11), and the results are shown in Figs. 4.4-4.6. In Fig. 4.4, the room temperature

exceeds the upper limit, whereas in Fig. 4.5, the correctness requirement is violated since the

room temperature remains below xw = 80 two steps after the heater is on. In both cases,

the likelihood of no-fault, PN , drops soon after the specification model R reaches state F , and

the fault can be detected with a delay of 7 steps by using a detection threshold ρ < 0.5. The

performance of the detection scheme can be evaluated by the errors in terms of false alarms

and missed detections (formally defined in next section), and Fig. 4.6 shows the number of

runs that are false-alarmed or missed-detected over the 5000 runs, as the detection threshold

ρ and detection delay n are changed. The number of runs that are false-alarmed is a function
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of the detection threshold and increases as the detection threshold increases, while the number

of runs that are missed-detected is a function of both detection threshold and detection delay.

When the detection delay is fixed, the number of runs that are missed-detected decreases as the

detection threshold increases, whereas it decreases also as the detection delay increases while

the detection threshold is fixed.

Figure 4.4 The detection result for a run that violates the correctness requirement by exceed-
ing the upper limit xh. (a) true r(2) = x v.s. y = x + w; (b) the true state of
specification model R where the fault-location F is represented by the number 3;
(c) the estimate of state probability distribution.

4.4 Performance Evaluation and Stochastic Diagnosability

As illustrated in the case study in previous section, the performance of the detection scheme

proposed above can be measured in terms of false alarm (FA) and missed detection (MD) rates.

Here we formally define FA and MD rates, by first introducing the following notions.

A finite run of the system is a finite execution of the stochastic difference equations (4.1)-

(4.3), denoted as z := (u|z|, x|z|, r|z|, y|z|), where |z| < ∞ and for each o ∈ {u, x, r, y}, o|z| :=

(o0, . . . , o|z|). A run is a fault run if the associated sequence of requirement variables r|z| is

an indicator, i.e., r|z| ∈ Iφ(G), where recall that Iφ(G) is the set of all indicators. A run

is a nonfault run if it is not a fault run. Given two runs z1 := (u
|z1|
1 , x

|z1|
1 , r

|z1|
1 , y

|z1|
1 ) and
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Figure 4.5 The detection result for a run that violates the correctness requirement by failing
to reach xw within 2 steps after the heater is on. (a) true r(2) = x v.s. y = x+w;
(b) the true state of specification model R where the fault-location F is represented
by the number 3; (c) the estimate of state probability distribution.

z2 := (u
|z2|
2 , x

|z2|
2 , r

|z2|
2 , y

|z2|
2 ), z1 is said to be a prefix of z2, denoted as z1 ≤ z2, if |z1| ≤ |z2|

and o
|z1|
2 ≡ o|z1|1 for each o ∈ {u, x, r, y}. In this case we denote z2\z1 as an extension of z1.

Associated with each run z is a sequence of detection statistics, P 0
N , P

1
N , . . . , P

|z|
N , computed

using (4.5)-(4.10). Then a FA occurs if the detector issues F decision for a nonfault run, and

so the FA rate can be defined as:

P fa := Pr(z : r|z| 6∈ Iφ(G) ∧ P |z|N ≤ ρ). (4.13)

A MD occurs if the detector remains silent n steps after the system executes an indicator, where

n is the detection delay bound allowed by the detector. Then the MD rate can be defined as:

Pmd := Pr(z : ∃k < |z| − n, rk ∈ Iφ(G), P
|z|
N > ρ). (4.14)

In the following we present a characterization of the class of systems for which detectors

with arbitrary accuracies can be designed, by introducing the notion of Stochastic Diagnosability

which requires that for any tolerable threshold ρ and error bound τ , there must exist a delay

bound n such that for any fault run, its extensions, longer than n and having likelihood of

no-fault lower than ρ, occur with probability at most τ .
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Figure 4.6 (a) The number of false alarms as a function of the threshold; (b) the number
of missed detections as a function of the threshold; (c) the number of missed
detections as a function of detection delay, when the threshold is ρ = 0.75.

Definition 7. Given a system G subjected to an input sequence drawn from a distribution µ,

with correctness requirement expressed in LTL formula φ, (G,µ, φ) is said to be Stochastically

Diagnosable, or simple S-Diagnosable, if ∀ρ, τ > 0, ∃n ∈ N, such that for any fault run z0,

Pr(z\z0 : |z| − |z0| > n,P
|z|
N > ρ) < τ. (4.15)

The following theorem establishes the significance of the S-Diagnosability property, by show-

ing its necessity and sufficiency for the existence of a detector to achieve any desired level of

accuracy as measured in terms of FA and MD rates.

Theorem 7. For any FA rate ν > 0 and MD rate τ > 0, there exists a detection threshold ρ

and delay bound n so that the rates of FA and MD defined by (4.13)-(4.14) satisfy P fa < ν

and Pmd < τ if and only if (G,µ, φ) is S-Diagnosable.

Proof. (Sufficiency) As shown in (4.13), for ρ1 > ρ2 > 0, {z : r|z| 6∈ Iφ(G) ∧ P |z|N ≤ ρ1} ⊇ {z :

r|z| 6∈ Iφ(G) ∧ P |z|N ≤ ρ2}, and so the FA rate decreases as the detection threshold gets lower.

Therefore, any FA rate ν can be achieved by adequately lowering the detection threshold. Let

ρν be the threshold that ensures FA rate ν. When (G,µ, φ) is S-Diagnosable, there exists an
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integer n ∈ N such that (4.15) holds. Therefore

Pmd = Pr(z : ∃k < |z| − n, rk ∈ Iφ(G), P
|z|
N > ρν)

=
∑

z0:r|z0|∈Iφ(G)

Pr(z0)× Pr(z\z0 : |z| − |z0| > n,P
|z|
N > ρν)

<
∑

z0:r|z0|∈Iφ(G)

Pr(z0)τ < τ.

Thus the sufficiency holds.

(Necessity) When (G,µ, φ) is not S-Diagnosable, there exists ρ0, τ0 > 0 and a fault run z0

such that for any n ∈ N, (4.15) does not hold, i.e.,

Pr(z\z0 : |z| − |z0| > n,P
|z|
N > ρ0) ≥ τ0. (4.16)

Let ν > 0 be such that ρν = ρ0. Then for any n ∈ N,

Pmd = Pr(z : ∃k < |z| − n, rk ∈ Iφ(G), P
|z|
N > ρ0)

≥ Pr(z0)Pr(z\z0 : |z| − |z0| > n,P
|z|
N > ρ0)

≥ Pr(z0)τ0 =: τlow.

Therefore in this case, a MD rate of τlow can not be achieved. Thus the necessity holds.

Remark 14. Theorem 7 identifies the class of systems for which a detector of any desired

accuracy can be constructed. Therefore, the S-Diagnosability property should be checked

before designing a detector—A desired accuracy may not be achievable if S-Diagnosability is

not satisfied. The future work will focus on the verification algorithm for S-Diagnosability,

together with algorithm that computes a detector so as to ensure the desired rates of FA and

MD. �

Example 9. Let us revisit the second system in Example 8. The state equation is given by:

xk+1 = xk + vk,

where the disturbance vk = sign(xk)v
′
k and v′k is a positive-valued random variable with density

function fv′ . The requirement and output variables are given by:

rk = 2xk − 1
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yk = 2xk − 1 + wk,

where wk is i.i.d. zero mean Gaussian random variable with variance σw. Consider again the

LTL formula φ = GF (r < 0). As shown in Example 8, the system is prediagnosable with

respect to φ. Moreover, according to Fig. 4.1(c), detecting the requirement violation by time

k is equivalent to detecting the existence of l ≤ k such that rl ≥ 0 (or xk ≥ 0.5).

Now consider a fault run z0 and its extension z\z0, we have

P
|z|
N = Pr(∀0 ≤ l ≤ |z|, xl < 0.5 | y0, . . . , y|z|)

=

∫ 0.5

−∞
· · ·
∫ 0.5

−∞
N (y|z| | 2x|z| − 1, σw)f(x|z| − x|z|−1)

× · · · × N (y1 | 2x1 − 1, σw)f(x1 − x0)

×N (y0 | 2x0 − 1, σw)d(x0)dx0 · · · dx|z|

≤
∫ 0.5

−∞
N (y|z| | 2x|z|1, σw)dx|z|.

For any ρ > 0, define yρ be such that∫ 0.5

−∞
N (yρ | 2x|z| − 1, σw)dx|z| = ρ.

Then (y|z| ≥ yρ)⇒ (P
|z|
N ≤ ρ), and so (P

|z|
N > ρ)⇒ (y|z| < yρ). Hence,

Pr(z\z0 : P
|z|
N > ρ) ≤ Pr(z\z0 : y|z| < yρ)

According to the discussion of Example 8, for any fault run z0, the sequence of state variables

(x0, x1, . . . ) is monotonically increasing. Therefore lim|z|→∞ x|z| = ∞ and so for a fixed ρ (or

yρ), lim|z|→∞ Pr(y|z| < yρ) = 0 (See Fig. 4.7). Then we have limn→∞ Pr(z\z0 : |z| − |z0| >

n, y|z| < yρ) = 0, i.e., for any τ > 0, there exists n ∈ N, such that

Pr(z\z0 : |z| − |z0| > n,P
|z|
N > ρ) ≤ Pr(z\z0 : |z| − |z0| > n, y|z| < yρ) < τ.

Since the above analysis works for any ρ > 0, one can conclude that S-Diagnosability holds

in this example. According to Theorem 7, any desired rates of FA and MD can be achieved

by suitably choosing threshold ρ and delay bound n. When the FA rate ν is made tighter by

decreasing it, a smaller detection threshold ρ is required, while when the MD rate τ is made

tighter by lowering it, a detector needs to wait for a longer delay bound n. �
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Figure 4.7 Gaussian distribution with mean x|z| and variance σw.

4.5 Conclusion

In this chapter we studied the failure diagnosis of discrete-time stochastic systems subject to

linear-time temporal logic correctness requirement. The continuous physical system (modeled

as stochastic difference equations) was refined against its LTL correctness requirement to yield

an input-output stochastic hybrid automaton which preserves the behavior of the physical

system and captures the requirement-violation as a reachability property to a fault-location.

The likelihood of no-fault was proposed as a detection statistic, and was recursively computed

for issuing a detection decision (a fault decision is issued when the likelihood of no-fault drops

below a suitably chosen threshold, implying the likelihood of no-fault has become “low” and so

a fault is concluded). Although in the proposed framework, a fault is defined to be a violation

of certain correctness requirement and does not necessarily result in a dynamics change, the

framework can be straightforwardly adopted to capture fault models which involve a change

in system dynamics as in [11, 93, 94, 91, 42, 92]. The proposed diagnosis procedure was

implemented for a benchmark room heating problem to show the validity and applicability of

the results. The performance of the procedure was evaluated in terms of false alarm and missed

detection rates, and the existence of detector for achieving any desired false alarm and missed

detection rates was captured as Stochastic Diagnosability introduced in this chapter. In future,
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the analytical computation of the rates of false alarm and missed detection will be investigated,

together with the verification of the Stochastic-Diagnosability property.
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CHAPTER 5. FAILURE PROGNOSIS OF STOCHASTIC DES

In this chapter we consider the fault prognosis problem, where the goal is to predict a fault

prior to its occurrence. The problem of predicting a fault prior to its occurrence is a well

researched area (see for example [73, 74, 75, 76, 77]). In [74] the notion of uniformly bounded

prognosability of fault was formulated for logical discrete event systems (DESs), where each

fault trace must possess a nonfault prefix such that for all indistinguishable traces, a future fault

is inevitable within a bounded delay that is uniform across all fault traces. The notion was later

extended to the decentralized setting in [75] and the requirement of the existence of a uniform

bound was also removed. Reference [75] also established that the notion of prognosability is

equivalent to the existence of a prognoser with no false alarm (FA) and no missed detection

(MD). The issue of prognosability under a general decentralized inferencing mechanism was

proposed in [79], where a prognostic decision involved inferencing among a group of local

prognosers over their local decisions and their ambiguity levels, and the notion of inference-

prognosability and its verification was introduced to capture the necessity and sufficiency of

inferencing based decentralized prognosis. The problem of distributed prognosability under

bounded-delay communications among the local prognosers was studied in [80], where the

notion of joint-prognosability and its verification was proposed.

In order to generalize the notion of prognosability to stochastic DESs, in this chapter, we

introduce m-steps Stochastic Prognosability, or simply Sm-Prognosability, which requires for

any tolerance level ρ and error bound τ , there exists a reaction bound k ≥ m, such that the

set of fault traces for which a fault cannot be predicted k steps in advance with tolerance level

ρ, occurs with probability smaller than τ . We formalize the notion of a prognoser that maps

observations to decisions by comparing a suitable statistic with a threshold, and show that

Sm-Prognosability is a necessary and sufficient condition for the existence of a prognoser with
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reaction bound at least m (i.e., prediction at least m-steps prior to the occurrence of a fault)

that can achieve any specified FA and MD rate requirement. In this sense Sm-Prognosability

can be viewed as a generalization of the logical prognosability, since it provides a basis for the

existence and synthesis of a prognoser that can achieve a user-specified level of FA and MD. In

contrast, the logical version is rather rigid, offering no further options for systems that fail to

be logically prognosable, even when there may exist a prognoser that can achieve a satisfying

performance as measured in terms of FA and MD rates. Further, we also provide a polynomial

algorithm for verifying Sm-Prognosability. We show that even the weakest form of stochastic-

prognosability where the reaction bound is zero, namely, S0-Prognosability, is stronger than

S-Diagnosability, meaning that whenever it is possible to predict faults (even with zero reaction

bound), it is also possible to diagnose those, as can be expected.

5.1 Stochastic Prognosability of DESs

We first formalize the notion of prognosability, called m-steps Stochastic Prognosability, or

simply Sm-Prognosability, for stochastic DESs, and provide necessary and sufficient conditions

for the verification of Sm-Prognosability. In the next section we show that for finite state

systems, Sm-Prognosability is necessary and sufficient for the existence of a prognoser that can

predict a fault at least m-steps prior to occurrence, while achieving any arbitrary false alarm

and missed detection rates.

Let L be a nonempty closed language and K ⊆ L be a nonempty closed language represent-

ing a nonfault specification. The fault prognosis problem is to predict an execution in L −K

before its occurrence. In order to be able to make a prognostic decision, we define the n-step

prognostic probability of no-fault following an observation o ∈M(L) as:

PnN (o) =
Pr({M−1(o)}Σn ∩K)

Pr({M−1(o)}Σn ∩ L)
=
Pr({M−1(o) ∩K}Σn ∩K)

Pr(M−1(o) ∩ L)
, (5.1)

and the least prognostic probability of no-fault following o ∈M(L) as:

P ∗N (o) = min
n∈N

PnN (o) =
minn∈N Pr({M−1(o)}Σn ∩K)

Pr({M−1(o)} ∩ L)
. (5.2)

Note PnN (o) is the probability, following the observation o, that the system does not execute

a fault in the next n steps; and P ∗N (o) is the least probability, following the observation o,
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that the system does not execute a fault over all finite-step futures. Note in the denominator

of (5.1), we used the fact that probability of all extensions of length n, beyond the traces in

M−1(o), is the same as the probability of traces in M−1(o), for there is no termination at any

of the states. As a result, the denominator is constant with respect to n, and the minimum

only applies to the numerator in (5.2).

To help formalize the prognosability for stochastic DESs, we introduce the notions of bound-

ary fault traces whose all strict prefixes are nonfault, m-steps interior nonfault traces for which

a fault can occur in the next (m+ 1)th step while no fault can occur within the next m steps,

persistent nonfault traces whose all extensions are nonfault, indicator nonfault traces for which

a future fault is guaranteed with arbitrary confidence and nonindicator nonfault traces that

are not the indicator traces.

Definition 8. Given a pair (L,K) of closed languages with K ⊆ L, we define the set of

• boundary fault traces as, ∂ := {s ∈ L−K : pr(s)− {s} ⊆ K};

• m-steps interior nonfault traces of K with respect to L (where m ≥ 0) as, ∂−m := {s ∈

K : {s}Σm ∩ ∂ = ∅, {s}Σm+1 ∩ ∂ 6= ∅};

• persistent nonfault traces of K with respect to L as, ℵ := {s ∈ K : ∀n ∈ N, {s}Σn ∩ (L−

K) = ∅} = {s ∈ K : ∀n ∈ N, P r({s}Σn ∩K) = Pr(s)};

• indicator nonfault traces of K with respect to L as, J := {s ∈ K : ∀ρ > 0, ∃n ∈

N, P r({s}Σn ∩K) ≤ ρ};

• nonindicator nonfault traces of K with respect L as, Υ := K − J.

Note that Υ = {s ∈ K : ∃ρ > 0, ∀n ∈ N, P r({s}Σn ∩K) > ρ}, and since ℵ is obtained by

replacing ρ by Pr(s) in the right hand side of this equality, it follows that ℵ ⊆ Υ. Also note

that ℵ is “extension-closed” in the sense that if it possesses s ∈ K, then it also possesses all

extensions t ∈ L with s ≤ t.

Next we introduce the definition of Sm-Prognosability which requires that, for any threshold

value ρ > 0 and error bound τ > 0, there exists a reaction bound k ≥ m, such that the set

of boundary fault traces, that are either shorter than k in length or for which a prognostic
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decision can not be made k steps in advance with confidence level ρ, occurs with probability

smaller than τ .

Definition 9. A pair (L,K) of closed languages with K ⊆ L is said to be m-steps Stochastically

Prognosable, or simply Sm-Prognosable, if

(∀τ, ρ > 0)(∃k ≥ m)Pr(s ∈ ∂ : [|s| ≤ k] ∨ [∀u ∈ s/Σ>k, P ∗N (M(u)) > ρ]) < τ, (5.3)

where P ∗N is as defined by (5.1) and (5.2).

The next lemma states that we can always choose the reaction bound k in Definition 9 to

equal m, thereby simplifying the definition a bit.

Lemma 1. A pair (L,K) of closed languages with K ⊆ L is Sm-Prognosable if and only if

∀τ, ρ > 0,

Pr(s ∈ ∂ : [|s| ≤ m] ∨ [∀u ∈ s/Σ>m, P ∗N (M(u)) > ρ]) < τ. (5.4)

Proof. The sufficiency is obvious by choosing k = m. Now to see the converse, assume (5.4) is

not true, i.e., ∃τ > 0, ρ > 0, s.t. Pr(s ∈ ∂ : [∀u ∈ s/Σ>m, P ∗N (M(u)) > ρ] ∨ [|s| ≤ m]) ≥ τ .

Since we have for all k ≥ m, {s ∈ ∂ : [∀u ∈ s/Σ>k, P ∗N (M(u)) > ρ] ∨ [|s| ≤ k]} ⊇ {s ∈ ∂ :

[∀u ∈ s/Σ>m, P ∗N (M(u)) > ρ] ∨ [|s| ≤ m]}, and hence Pr(s ∈ ∂ : [∀u ∈ s/Σ>k, P ∗N (M(u)) >

ρ]∨ [|s| ≤ k]) ≥ Pr(s ∈ ∂ : [∀u ∈ s/Σ>m, P ∗N (M(u)) > ρ]∨ [|s| ≤ m]) ≥ τ . Therefore according

to Definition 9, (L,K) is not Sm-Prognosable. Hence the necessity also holds.

Denote `(∂) = min{|s|, s ∈ ∂} as the length of the shortest fault trace in L−K. Then the

following theorem provides a necessary and sufficient condition for Sm-prognosability requiring

the reaction bound m to be smaller than the length of the shortest fault trace, `(∂), and every

boundary fault trace in ∂ to possess a nonfault prefix which is more than m-steps shorter and

is unambiguously an indicator.

Theorem 8. A pair (L,K) of closed languages with K ⊆ L is Sm-Prognosable if and only if

m < `(∂) and

(∀s ∈ ∂)(∃u ∈ s/Σ>m)(M−1M(u) ∩K ⊆ J). (5.5)
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Proof. (Sufficiency) For any s ∈ ∂, let u ∈ s/Σ>m be such that M−1M(u) ∩K ⊆ J. Then

PnN (M(u)) =
Pr({M−1M(u) ∩K}Σn ∩K)

Pr(M−1M(u) ∩ L)
=

∑
u′∈M−1M(u)∩K Pr({u′}Σn ∩K)

Pr(M−1M(u) ∩ L)
.

For any ρ > 0, define ρu′ := ρPr(u′) > 0 for each u′ ∈ M−1M(u) ∩ K. Then since

M−1M(u)∩K ⊆ J, for each u′ ∈M−1M(u)∩K, exists nu′ ∈ N such that Pr({u′}Σnu′ ∩K) ≤

ρu′ . Let d := maxu′∈M−1M(u)∩K nu′ . Note that d here is a finite integer even if M−1M(u)

is an infinite set (resulted by unobservable loops). To see this, let u1 = u11u12 and u2 =

u11σ1 . . . σku12 such that σ1 . . . σk is an unobservable loop. Then we have Pr({u2}Σnu1 ∩K) =

Pr(σ1 . . . σk)Pr({u1}Σnu1 ∩K) < ρPr(σ1 . . . σk)Pr(u1) = ρPr(u2) = ρu2 , and thus nu2 ≤ nu1 .

Therefore to find d, we only need to consider u′ ∈M−1M(u) ∩K such that u′ doesn’t contain

any unobservable loop, making d finite. Then

P dN (M(u)) =

∑
u′∈M−1M(u)∩K Pr({u′}Σd ∩K)

Pr(M−1M(u) ∩ L)

≤
∑

u′∈M−1M(u)∩K ρu′

Pr(M−1M(u) ∩ L)

=

∑
u′∈M−1M(u)∩K ρPr(u

′)

Pr(M−1M(u) ∩ L)

=
Pr(M−1M(u) ∩K)

Pr(M−1M(u) ∩ L)
ρ ≤ ρ. Hence,

P ∗N (M(u)) ≤ P dN (M(u)) ≤ ρ.

Also since m < `(∂) implies {s ∈ ∂ : |s| ≤ m} = ∅, we have for all ρ > 0 and τ > 0,

Pr(s ∈ ∂ : [∀u ∈ s/Σ>m, P ∗N (M(u)) > ρ] ∨ [|s| ≤ m]) = 0 < τ. According to Lemma 1, (L,K)

is Sm-Prognosable.

(Necessity) When m ≥ `(∂), let s ∈ ∂ be such that |s| = `(∂) ≤ m. Obviously for any τ ≤

Pr(s), Pr(s ∈ ∂ : [∀u ∈ s/Σ>m, P ∗N (M(u)) > ρ]∨ [|s| ≤ m]) ≥ Pr(s ∈ ∂ : |s| ≤ m) ≥ Pr(s) ≥ τ

for all ρ > 0. Therefore (L,K) is not Sm-Prognosable. When m < `(∂), but (5.5) is not true,

let s ∈ ∂ be such that (∀u ∈ s/Σ>m)(M−1M(u) ∩K ∩ Υ 6= ∅). Then for any u ∈ s/Σ>m and

u′ ∈M−1M(u) ∩K ∩Υ,

PnN (M(u)) =
Pr({M−1M(u) ∩K}Σn ∩K)

Pr(M−1M(u) ∩ L)
≥ Pr({u′}Σn ∩K)

Pr(M−1M(u) ∩ L)
.
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Figure 5.1 Refinement GR for Example 10.

Since u′ ∈ Υ, there exists ρu′ > 0 such that ∀n ∈ N, P r({u′}Σn ∩K) > ρu′ . Therefore for any

n ∈ N,

PnN (M(u)) ≥ Pr({u′}Σn ∩K)

Pr(M−1M(u) ∩ L)
>

ρu′

Pr(M−1M(u) ∩ L)
=: ρu,

and hence

P ∗N (M(u)) = min
n∈N

PnN (M(u)) > ρu.

Thus for any u ∈ s/Σ>m, there exists ρu > 0 such that P ∗N (M(u)) > ρu. Therefor for any

0 < ρ < minu∈s/Σ>m ρu and 0 < τ < Pr(s), Pr(s ∈ ∂ : [∀u ∈ s/Σ>m, P ∗N (M(u)) > ρ] ∨ [|s| ≤

m]) ≥ Pr(s) > τ. Hence (L,K) is not Sm-Prognosable, according to Lemma 1.

Example 10. For refined system shown in Fig. 5.1, the observation mask M is such that

M({d, f}) = {ε} and M(σ) = σ for σ ∈ Σ − {d, f}. In GR there are two closed SCCs, one is

formed by the nonfault state (1, 1) and its selfloop transitions whereas the other is formed by

the fault state (4, F ) and its selfloop transitions. Since `(∂) = 4, by Theorem 8, the system

can not be Sm-Prognosable with m ≥ 4. The set of indicator traces is J = {a}Σ∗ ∩ K, and

the set of nonindicator traces is Υ = {ε} ∪ {d}Σ∗ ∩L, while the set of boundary fault traces is

∂ = ab∗cac∗f . One can check that for any s ∈ ∂, there exists u ∈ s/Σ>1 ⊆ {ab∗c}Σ∗ ∩K such

that M−1M(u) ∩ K ⊆ J. Therefore by Theorem 8, (L,K) is S1-Prognosable. On the other

hand, for s = acaf ∈ ∂, u = a ∈ s/Σ>2 is such that M−1M(u)∩K ∩Υ = {da} 6= ∅. Therefore

by Theorem 8, (L,K) is not S2-Prognosable. �

The following corollary is directly obtained from Theorem 8, and captures the expected

property that prognosability continues to hold even with smaller reaction bound.
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Corollary 1. Given a pair (L,K) of closed languages with K ⊆ L, if (L,K) is Sm-Prognosable,

then (L,K) is Sm′-Prognosable for all nonnegative m′ ≤ m, whereas if (L,K) is not Sm-

Prognosable, then (L,K) is not Sm′-Prognosable for all m′ ≥ m.

For a Sm-Prognosable system, Theorem 8 requires that each boundary fault trace possess a

more than m-steps shorter prefix that is unambiguously an indicator. We can strengthen this

theorem by requiring that exactly the (m + 1)-shorter prefix possess the said property. This

requires the result of the next lemma stating that indicators are “extension-closed” (nonfault

extensions of indicators are also indicators), while nonindicators are prefix-closed (prefixes of

nonindicators are also nonindicators).

Lemma 2. For a pair (L,K) of closed languages with K ⊆ L, it holds that JΣ∗ ∩K ⊆ J, and

pr(Υ) ⊆ Υ.

Proof. Let s ∈ J be arbitrary, i.e., ∀ρ > 0, ∃n ∈ N s.t. Pr({s}Σn ∩ K) ≤ ρ. Since for

any t ∈ K\s, Pr({st}Σl ∩ K) ≤ Pr({s}Σl+|t| ∩ K), we have ∀ρ > 0, ∃l = n − |t| ∈ N s.t.

Pr({st}Σl ∩K) ≤ Pr({s}Σl+|t| ∩K) = Pr({s}Σn ∩K) ≤ ρ. According to Definition 8, st ∈ J,

i.e., ∀s ∈ J, t ∈ K\s, st ∈ J. Therefore JΣ∗ ∩K ⊆ J.

Similarly let s ∈ Υ be arbitrary, i.e., ∃ρ > 0 s.t. ∀n ∈ N, Pr({s}Σn ∩K) > ρ. Then for

any u ∈ pr(s), Pr({u}Σl ∩K) ≥ Pr({s}Σl−|s|+|u| ∩K) > ρ for any l − |s|+ |u| ∈ N and hence

for any l ∈ N. According to Definition 8, u ∈ Υ, i.e., ∀s ∈ Υ, u ∈ pr(s), u ∈ Υ. Therefore

pr(Υ) ⊆ Υ.

Using Lemma 2, we can strengthen Theorem 8 to obtain a new result which we employ

later for verifying Sm-Prognosability. The new theorem states that Sm-Prognosability holds if

and only if the reaction bound m < `(∂), and all m-steps interior traces are distinguishable

from any nonindicator trace.

Theorem 9. A pair (L,K) of closed languages with K ⊆ L is Sm-Prognosable if and only if

m < `(∂) and

M−1M(∂−m) ∩Υ = ∅. (5.6)
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Proof. If m < `(∂) and (5.6) is true, then it follows from the fact that every fault trace s ∈ ∂

possesses a nonfault prefix u ∈ ∂−m satisfying u ∈ s/Σ>m and Theorem 8 that (L,K) is Sm-

Prognosable, and the sufficiency follows. On the other hand, if m ≥ `(∂), then by Theorem 8,

(L,K) is not Sm-Prognosable. Meanwhile if m < `(∂) but (5.6) is not true, then we can select

s ∈ ∂−m and s′ ∈ Υ such that M(s) = M(s′). Then for any u ∈ pr(s), there exists u′ ∈ pr(s′)

such that M(u) = M(u′) and u′ ∈ Υ (Lemma 2), i.e., ∀u ∈ pr(s), M−1M(u) ∩ K ∩ Υ 6= ∅.

It follows from the definition of ∂−m that there exists st ∈ ∂ such that st/Σ>m = pr(s), and

hence ∀u ∈ st/Σ>m = pr(s), M−1M(u) ∩K ∩ Υ 6= ∅. According to Theorem 8, (L,K) is not

Sm-Prognosable. Thus the necessity also holds.

Example 11. For refined system shown in Fig. 5.1, J = {a}Σ∗ ∩ K, Υ = {ε} ∪ {d}Σ∗ ∩ L,

∂−2 = ab∗ and ∂−1 = ab∗c. One can easily check that M−1M(∂−2 ) ∩ Υ = dab∗ 6= ∅ and

M−1M(∂−1 ) = ab∗c ⊆ J. Therefore (L,K) is S1-Prognosable but not S2-Prognosable, as

discussed in Example 10. �

5.2 Prognoser and its Existence Condition

In order to predict a fault in advance, the prognoser computes for each o ∈ M(L), the

prognostic probability of no-fault P ∗N (o) as defined by (5.1)-(5.2), and compares it with an

appropriately chosen threshold ρ. Whenever P ∗N (o) is below this threshold, implying that

there is only a small likelihood of no-fault in future, the prognoser issues a fault warning F ,

predicting/prognosing a future fault, and otherwise it remains silent (issues ε). In other words,

a prognoser is formally a map, D : M(L)→ {F, ε} defined as:

∀o ∈M(L), [D(o) = F ]⇔ [∃o ≤ o : P ∗N (o) ≤ ρ], (5.7)

where P ∗N is as defined by (5.1) and (5.2). Note that according to (5.7), once a warning is

issued, it remains unchanged for the subsequent extensions.

For a prognoser that aims to predict a fault at least m steps before its occurrence, a miss

detection (MD) occurs when a fault happens while the prognoser fails to issue a warning m

steps in advance. On the other hand a false alarm (FA) occurs when a warning is issued for a
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trace whose all extensions are nonfault, i.e., a trace in ℵ. Therefore the MD rate Pmd and the

FA rate P fa for a m-prognoser can be defined as:

Pmd = Pr(s ∈ ∂ : [|s| ≤ m] ∨ [D(M(s/Σm+1)) = ε] (5.8)

P fa = Pr(s ∈ ℵ : D(M(s)) = F ). (5.9)

Considering the fact the once the prognoser issues F , it issues F for any subsequent observa-

tions, the above equations can also be equivalently presented as:

Pmd = Pr(s ∈ ∂ : [|s| ≤ m] ∨ [∀u ∈ s/Σ>m, P ∗N (M(u)) > ρ])

P fa = Pr(s ∈ ℵ : ∃u ∈ pr(s), P ∗N (M(u)) ≤ ρ).

Example 12. For the system GR shown in Fig. 5.1. Suppose GR executes dabbb and produces

observation o = abbb, then P ∗N (o) = 0.5872. Hence for any m-prognoser with threshold ρ ≥

0.5872, traces in {dabbb}Σ∗∩L will be false alarmed. When GR executes a trace in ab∗cac∗f ⊆ ∂

and produces an observation o ∈ ab∗cac∗, then P ∗N (o) approaches 0. Therefore for a 1-prognoser

with any threshold ρ, all fault traces can be prognosed, and hence no missed detection. However,

for a 2-prognoser with ρ = 0.3, when GR executes the fault trace abcaf , a prognostic decision

can be made only upon observing abc (since for all its prefixes, the threshold remains lower

than the prognostic probability of no fault: P ∗N (ε) = 0.5, P ∗N (a) = 0.375, P ∗N (ab) = 0.444,

P ∗N (abc) = 0), which violates the least reaction bound m = 2, and hence abcaf gets missed

detected. �

In order to establish a condition for the existence of a m-prognoser in terms of the property

of Sm-prognosability, we first establish the following corollary of Theorem 8 and Lemma 2.

Corollary 2. If a pair (L,K) of closed languages withK ⊆ L is Sm-Prognosable, thenM−1M(Υ)∩

(L−K) = ∅.

Proof. Suppose for contradiction that (L,K) is Sm-Prognosable and there exists s ∈ Υ such

that M−1M(s) ∩ (L − K) 6= ∅. Let s′ ∈ M−1M(s) ∩ (L − K). Then for all u′ ∈ pr(s′),

there exists u ∈ pr(s) such that M(u) = M(u′). According to Lemma 2, u ∈ Υ. Therefore,

∀u′ ∈ pr(s′) ∩K, M−1M(u′) ∩K ∩ Υ 6= ∅. By Theorem 8, (L,K) is not Sm-Prognosable for

any m ∈ N, which contradicts the assumption that (L,K) is Sm-Prognosable.
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The next lemma which states that under the assumption of regularity of languages L and

K, equivalently the finiteness of the state-space of GR, no extension of an indicator can be

persistently nonfault, whereas some extension of a nonindicator must be persistently nonfault.

The lemma requires the finiteness of the state-space that guarantees the probability of staying

in a transient state approaches 0 while the system evolves.

Lemma 3. For a pair (L,K) of closed regular languages with K ⊆ L, we have JΣ∗ ∩ℵ = ∅ and

ΥΣ∗ ∩ ℵ 6= ∅.

Proof. Assume for contradiction that there exists s ∈ J such that {s}Σ∗ ∩ ℵ 6= ∅. Let

u = σ1 . . . σn ∈ K\s be such that su ∈ ℵ. Then for any l ∈ {1, . . . , n}, Pr({s}Σl ∩ K) ≥

Pr(sσ1 . . . σl) ≥ Pr(su), and for l > n, Pr({s}Σl ∩ K) ≥ Pr({su}Σl−n ∩ K) = Pr(su), i.e.,

there exists 0 < ρ < Pr(su) such that for any l ∈ N, Pr({s}Σl ∩K) > ρ. Therefore s 6∈ J, a

contradiction.

Similarly assume for contradiction that there exists s ∈ Υ such that {s}Σ∗ ∩ ℵ = ∅. Then

for any u ∈ L\s, it possesses a fault extension t ∈ (L − K)\su, i.e., the “nonfaulty-ness of

s” is a transient property. Since the language L and K are regular and have finite state

representations, for any ρ > 0, there exists n ∈ N such that Pr(t ∈ K\s, |t| ≥ n) ≤ ρ, i.e.,

Pr({s}Σn ∩K) = Pr(s)Pr(t ∈ K\s, |t| = n) ≤ ρPr(s) := ρ′ holds for any ρ′ > 0. Hence s ∈ J,

which contradicts the assumption that s ∈ Υ.

Remark 15. Note by Lemma 3, no extension of an indicator trace can persistently be a nonfault

trace. This requirement is weaker than the corresponding requirement for an indicator trace in

the logical setting: All extensions of an indicator trace must be a fault trace within a bounded

steps. A consequence of this is that, in the logical setting, an indicator trace cannot visit a

cycle of nonfault states [75], which can be restrictive. In contrast, in stochastic setting, an

indicator is allowed to visit a cycle of nonfault states as long as the cycle is non-absorbing (i.e.,

it has a positive exit probability, which ensures the non-persistence of remaining nonfault). �

Now we are ready to present the main result of the section, which shows that for regular

languages L and K, Sm-Prognosability is necessary and sufficient for the existence of a m-

prognoser to satisfy any level of FA and MD rates.
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Theorem 10. Consider a pair (L,K) of closed regular languages with K ⊆ L. Then for any

FA rate φ > 0 and MD rate τ > 0, there exists a m-prognoser (and its associated prognostic

decision threshold) defined by (5.7) such that the MD and FA rates defined by (5.8)-(5.9) satisfy

Pmd ≤ τ and P fa ≤ φ if and only if (L,K) is Sm-Prognosable.

Proof. (Sufficiency) Suppose (L,K) is Sm-Prognosable. Then for a nonfault trace s ∈ K − ℵ,

its extensions continuing to remain in K −ℵ is a transient property. Since the language L and

K are regular and have finite state representations, we have for any φ1 > 0, ∃d1 ∈ N such that

Pr(s ∈ (K − ℵ) ∩ Σ>d1) < φ1. For any s ∈ ℵ ∩Σd1 , if we pick ρ′s := minu∈pr(s) P
∗
N (M(u)) > 0,

we can ensure that s is not false alarmed. For any s ∈ ℵ∩Σd1 , according to Lemma 5 (presented

in Appendix C), for any φ2 > 0 and ρ′2 > 0, there exists d2 ∈ N, such that the set of extensions

of s that are longer than d2 and have P ∗N values of their observations smaller than ρ′2, occur

with probability smaller than φ2, i.e., P fa(s) < φ2.

Let d = d1 + d2. If we pick ρ′ = minu∈pr(s),s∈ℵ∩Σd P
∗
N (M(u)) > 0, ρ < min(ρ′2, ρ

′) and

φ1 + φ2 < φ, then P fa is upper bounded by

P fa = Pr(s ∈ ℵ : ∃u ∈ pr(s), P ∗N (M(u)) ≤ ρ)

= Pr(s ∈ ℵ : pr(s) ∩ Σd ∩ ℵ = ∅,∃u ∈ pr(s), P ∗N (M(u)) ≤ ρ)

+Pr(s ∈ ℵ : pr(s) ∩ Σd ∩ ℵ 6= ∅, ∃u ∈ pr(s), P ∗N (M(u)) ≤ ρ)

≤ Pr(s ∈ (K − ℵ) ∩ Σ>d1) +
∑

s∈ℵ∩Σd1

Pr(s)φ2 < φ1 + φ2 < φ.

Therefore with the above choice of ρ, an arbitrary FA rate φ could be achieved. Next since

(L,K) is Sm-Prognosable, according to Lemma 1, with this choice of ρ, for any τ > 0, we have

Pmd ≤ Pr(s ∈ ∂ : [∀u ∈ s/Σ>m, P ∗N (M(u)) > ρ] ∨ [|s| ≤ m]) < τ. Therefore the sufficiency

holds.

(Necessity) To show the necessity, consider the contrapositive where (L,K) is not Sm-

Prognosable. Then by Theorem 8, there are two possibilities. First, if m ≥ `(∂), then let s ∈ ∂

be such that |s| = `(∂), and in which case,

Pmd ≥ Pr(s ∈ ∂ : [|s| ≤ m] ∨ [∀u ∈ s/Σ>m, P ∗N (M(u)) > ρ]) ≥ Pr(s ∈ ∂ : |s| ≤ m) ≥ Pr(s).

Therefore a MD rate τ < Pr(s) can not be achieved.
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On the other hand, if m < `(∂) but (5.5) is not true, then exists s ∈ ∂, such that for all

u ∈ s/Σ>m, there exists u′ ∈ Υ with M(u) = M(u′). Since u′ ∈ Υ, according to Lemma 3,

there exists t′ ∈ K\u′ such that u′t′ ∈ ℵ. If we choose ρ < minu∈s/Σ>m P
∗
N (u), then s will

be missed detected, and a MD rate τ < Pr(s) can not be achieved. On the other hand if we

choose ρ ≥ minu∈s/Σ>m P
∗
N (u), then u′t′ will be false alarmed, and a FA rate φ < Pr(u′t′) can

not be met. Therefore in this case, at most one of arbitrarily small FA or MD rates can be

achieved, completing the contraposition argument.

5.3 Verification of Stochastic Prognosability

Having established Sm-Prognosability as a central property, needed for the existence of a

m-prognoser, we next provide a polynomial algorithm for the verification of Sm-Prognosability

utilizing Theorem 9. We need the following definitions that identify m-steps interior nonfault

states from where no fault can occur within m steps but will occur at (m + 1)th step, indi-

cator nonfault states from where a future fault is inevitable with arbitrary confidence, and

nonindicator nonfault states which are not indicator states.

Definition 10. Given a stochastic DES G = (X,Σ, α, x0), deterministic nonfault specification

R = (Q,Σ, β, q0), with their refinement GR = (X ×Q,Σ, γ, (x0, q0)), the set of

• m-steps interior nonfault states ∂−m(X×Q) ⊆ X×Q (where m ≥ 0) are states (x, q) such

that q 6= F , and there exists (x′, q′) with q′ = F and s ∈ Σm+1 s.t. γ((x, q), s, (x′, q′)) > 0

and for all (x′, q′), s ∈ Σm, [γ((x, q), s, (x′, q′)) > 0]⇒ [q′ 6= F ];

• indicator nonfault states J(X ×Q) are states (x, q) such that q 6= F and from which the

system can not reach a closed SCC in GR that contains a nonfault state;

• nonindicator nonfault states Υ(X × Q) are states from which the system can reach a

closed SCC in GR that contains a nonfault state.

The following lemma is immediate from Definition 8, Definition 10 and Lemma 3.

Lemma 4. Given a pair (L = L(G),K = L(R)) of closed regular languages with K ⊆ L, then

for any s ∈ K,
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• [s ∈ ∂−m]⇔ [∃(x, q) ∈ ∂−m(X ×Q), γ((x0, q0), s, (x, q)) > 0];

• [s ∈ J]⇔ [∃(x, q) ∈ J(X ×Q), γ((x0, q0), s, (x, q)) > 0];

• [s ∈ Υ]⇔ [∃(x, q) ∈ Υ(X ×Q), γ((x0, q0), s, (x, q)) > 0].

The following algorithm verifies the condition of Theorem 9.

Algorithm 4. For a given stochastic automaton G = (X,Σ, α, x0) and a deterministic nonfault

specification R = (Q,Σ, β, x0), perform the following steps:

1) Check if the length of the shortest trace to a state X ×{F} in GR is smaller than m, if the

answer is yes, proceed to step 2), otherwise (L,K) is not Sm-Prognosable;

2) Construct a testing automaton T = GR × GR such that at each step the first copy of

GR takes lead in executing transitions, whereas the second copy responds by executing an

indistinguishable nonfault trace. This automaton is denoted as T = (Z,Σ×Σ, δ, z0), where

• Z = X ×Q×X ×Q;

• z0 = ((x0, q0), (x0, q0)) is the initial state;

• δ : Z × Σ × Σ × Z → [0, 1] is defined as: ∀((x1, q1), (x2, q2)), ((x′1, q
′
1), (x′2, q

′
2)) ∈

Z, (σ, σ′) ∈ Σ× Σ,

δ(((x1, q1), (x2, q2)), (σ, σ′), ((x′1, q
′
1), (x′2, q

′
2)))

=



γ((x1, q1), σ, (x′1, q
′
1)), if (σ ∈ Σuo) ∧ (σ′ = ε)

∧ ((x2, q2) = (x′2, q
′
2)) ∧ (q′2 6= F );

∧ ((x2, q2) = (x′2, q
′
2)) ∧ (q′2 6= F );

γ((x1,q1),σ,(x′1,q
′
1))α(L

GR
((x2,q2),σ′,(x′2,q

′
2)))

α(L
GR

((x2,q2),M(σ))) , if (σ ∈ Σ− Σuo) ∧ (M(σ) = M(σ′))

∧ (LGR((x2, q2), σ′, (x′2, q
′
2))) 6= ∅)

∧ (q′2 6= F );

0 otherwise.



www.manaraa.com

74

According to the definition of δ, when the first copy of GR executes an unobservable event,

the second copy responds by ε (since it observes nothing); if the first copy executes an

observable event σ, then the second copy responds by executing a nonfault trace consisting

of sequence of unobservable events followed by an observable event that has the same mask

value as M(σ). Note a conditioning is applied to limit the executions of the second copy to

indistinguishable nonfault traces.

3) Check if every state ((x1, q1), (x2, q2)) with (x1, q1) ∈ ∂−m(X ×Q) satisfies (x2, q2) 6∈ Υ(X ×

Q), (L,K) is Sm-Prognosable if and only if the answer is yes.

The following theorem guarantees the correctness of Algorithm 4.

Theorem 11. A pair (L = L(G),K = L(R)) of closed regular languages with K ⊆ L is Sm-

Prognosable if and only if any fault state can only be reached in more than m-steps in GR

and every reachable state ((x1, q1), (x2, q2)) of T with (x1, q1) ∈ ∂−m(X ×Q) satisfies (x2, q2) 6∈

Υ(X ×Q).

Proof. Obviously we have: any fault state can only be reached in more than m-steps if and only

if m < `(∂). Next, by the construction of T , for any s ∈ L and s′ ∈ K, M(s) = M(s′) if and only

if there exists ((x1, q1), (x2, q2)) such that δ(((x0, q0), (x0, q0)), (s, s′), ((x1, q1), (x2, q2))) > 0.

So if every reachable state ((x1, q1), (x2, q2)) with (x1, q1) ∈ ∂−m(X × Q) satisfies (x2, q2) 6∈

Υ(X × Q), then by Lemma 4, every s ∈ ∂−m is not ambiguous with any nonindicator trace,

i.e., M−1M(∂−m) ∩ Υ = ∅. Therefore (L,K) is Sm-Prognosable according to Theorem 9, and

the sufficiency follows. On the other hand, if the theorem’s condition is not satisfied, then

either m ≥ `(∂) or there exists (s, s′) with M(s) = M(s′) and ((x1, q1), (x2, q2)) such that

(x1, q1) ∈ ∂−m(X×Q), (x2, q2) ∈ Υ(X×Q) and δ(((x0, q0), (x0, q0)), (s, s′), ((x1, q1), (x2, q2))) >

0. i.e., s ∈ ∂−m and s′ ∈ Υ. Therefore M−1M(∂−m) ∩ Υ 6= ∅. By Theorem 9, (L,K) is not

Sm-Prognosable, which proves the necessity.

Example 13. Let us revisit the system shown in Fig. 5.1. According to Definition 10, J(X×Q) =

{(2, 2), (3, 3), (4, 4)}, Υ(X × Q) = {(0, 0), (1, 1)}, ∂−1 (X × Q) = {(3, 3)} and ∂−2 (X × Q) =

{(2, 2)}. It is easy to check that 1 < 2 < `(∂) = 4. The testing automaton is shown in Fig. 5.2.
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Figure 5.2 Testing automaton for Example 13.

The only state ((x1, q1), (x2, q2)) such that (x1, q1) ∈ ∂−1 (X×Q) is labeled in italic and satisfies

(x2, q2) 6∈ Υ(X × Q) and therefore (L,K) is S1-Prognosable. All the states ((x1, q1), (x2, q2))

such that (x1, q1) ∈ ∂−2 (X × Q) are labeled in bold, and there exists ((2, 2), (1, 1)) such that

(2, 2) ∈ ∂−2 (X ×Q) and (1, 1) ∈ Υ(X ×Q). Therefore (L,K) is not S2-Prognosable. These are

as expected from the discussion in Examples 10 and 11. �

Remark 16. In Algorithm 4. GR has O(|X| × |Q|) states and O(|X|2 × |Q| × |Σ|) transitions,

and the testing automaton T = GR × GR has O(|X|2 × |Q|2) states and O(|X|4 × |Q|2 ×

|Σ|2) transitions. The computation of transition probabilities in T requires solving the matrix

equation (2.1) for each σ ∈ Σ−Σuo with complexity that is cubic in the number of states in GR

and linear in the number of events in GR, namely, O(|X|3 × |Q|3 × |Σ|). Thus the complexity

of constructing T is O(|X|4×|Q|2×|Σ|2 + |X|3×|Q|3×|Σ|). The shortest path to a fault state

in GR can be computed in O(
√
|X| × |Q|× |X|2×|Q|× |Σ|) [96]. Identifying the set of m-steps

interior nonfault states in GR can be done linearly in the size of GR, i.e., O(|X|2 × |Q| × |Σ|),

and identifying the set of indicator nonfault states can be achieved by determining all the

nonfault closed SCC in GR using the algorithm in [97], which can be done in O(|X|3 × |Q|3).

Therefore the overall complexity of Algorithm 4 is O(|X|4 × |Q|2 × |Σ|2 + |X|3 × |Q|3 × |Σ|),

which is polynomial in the number of states and events. Further if G is also deterministic
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(besides R) so that GR has a smaller number of transitions, namely, O(|X| × |Q| × |Σ|), then

the verification complexity reduces to O(|X|2×|Q|2×|Σ|2 + |X|3×|Q|3×|Σ|). Furthermore, if

the mask is “projection-type”, the complexity further reduces due to a reduction in the number

of transitions in GR, where each state can now only have at most |Σ| outgoing transitions, and

thus the |Σ|2 term will get replaced by |Σ| in the complexity expression. �

5.4 Illustrative Examples

In this section, two simple practical examples are given to illustrate our results.

5.4.1 “Crowd” Protocol

We consider the application of our results to the “Crowd” system, an anonymity protocol

introduced in [98] that is used to protect the identity on the world-wide-web, which is recently

studied in the stochastic DESs setting [99, 100]. When an user (called initiator) decides to

send a message to a web-server without revealing itself as the originator of the message, the

user routes the message through a crowd of users (possibly itself). When a user in the crowd

receives a message, it either sends the message to the web-server or forwards the message to

a user in the crowd (possibly itself). Then this protocol is considered to be secure in hiding

the identity of the originator. However, there can be a number of corrupted users in the crowd

which can leak the information of the origin of the message, and as is usually the case with the

analysis of Crowd ([101]), we also assume that a corrupted user does not forward a message to

others. The process is depicted in Fig. 5.3, where the size of the crowd is taken to be 7, the

possible initiators are {1, 2} and the corrupted user is {7}.

Now we consider the case when a user tries to send a message to the web-server and initiates

a route, and it also monitors the routing of that message to avoid the message being received by

a corrupted user. The corresponding automaton model is given as Fig. 5.4, where a new initial

state “0” is added from where the two initiator nodes can be reached with equal probability. It

is assumed that each user chooses among its forwarding successors with a uniform probability

distribution. Suppose three of the forwarding actions can be observed with the observation

labels as shown, whereas the unobservable transitions are unlabeled. A fault is defined as
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Figure 5.3 A crowd with size 7 and 2 initiators.

the forwarding of a message to the corrupted user “7”, i.e., the nonfault specification can be

obtained by removing the corrupted user “7” and all associate transitions. It can be checked

that under this observation mask, the system is not Sm-Prognosable for any m ≥ 0, since for

any fault trace reaching “7”, all its prefixes are ambiguous with a certain nonindicator trace. To

make the monitoring process meaningful, a control policy can be applied so that the self-loop

of state “4” is forbidden, i.e., after receiving a message, the user “4” can only forward it to

the user “5”, “6” and web-server. Then one can verify that the system is now S1-Prognosable.

Note in this example, neither the monitor nor the control has any affect on the corrupted user,

leaving the corrupted user unaware of the existence of the monitoring or control.

Figure 5.4 The automaton for the Crowd system in Fig. 5.3.
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5.4.2 Prognosis of Stuck Faults in HVAC System

Consider the heating, ventilation and air conditioning (HVAC) system as examined in [74,

41], which is modeled as a stochastic DES consisting of four components: a pump, a valve,

a controller and a flow sensor. The model is shown in Fig. 5.5, which has 24 states, 11

events and 36 transitions, and is initialized at state 1. Each event in the stochastic DES has

two parts, the first of which describes the motion of the controller and the second of which

indicates the output of the flow sensor (“F” denotes “there is flow” and “NF” denotes “there

is no flow”, while no output by the flow sensor is described as ε, which for simplicity is omitted

in Fig. 5.5). The unobservable events are given by Σuo = {stuck closed, stuck open}, which

are also the fault events Σf experienced by the controller; all other events are observed fully.

The plant model shows the probability labels for each transitions. The deterministic nonfault

specification is obtained by excluding all the states resulted by the fault events “stuck closed”

and “stuck open”, and is a subautomaton of the plant automaton, and without the probability

labels (the definition of what constitutes a fault is independent of its occurrence probability).

As can be seen, the shortest fault trace is “stuck closed” itself which has a length of 1. Therefore

the system can not be Sm-Prognosable with m ≥ 1. One can check that in this example every

nonfault trace has an extension reaching the absorbing nonfault state “24” and hence is a

nonindicator. Therefore the system is not S0-Prognosable. To achieve the S0-Prognosability,

one can exercise a control policy so that the system dynamics does not allow permanent idling

by removing state “24” and adding a self-loop on state “10” with the same probability as

transitioning to 24. Then one can verify by Algorithm 4 that the system is S0-Prognosable.

5.5 Comparison With Related Concepts

In this section we will compare S0-Prognosability with the notion of Prognosability in the

logical setting [74, 75] and the notion of S-Diagnosability that are required for fault detec-

tion (as opposed to fault prediction) [47, 41, 43, 36]. To compare with the logical version

of prognosability, we reproduce the definition from [75], specialized to centralized setting as

follows:
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Figure 5.5 Automaton G for the HVAC system under prognosis.

Definition 11 ([75]). A pair (L,K) of closed languages with K ⊆ L is said to be logically

Prognosable if

(∀s ∈ ∂)(∃u ∈ s/Σ>0)(M−1M(u) ∩K ⊆ J̃), (5.10)

where J̃ denotes the set of logical indicators and is given by J̃ := {s ∈ K : ∃n ∈ N, L\s∩Σ≥n ⊆

[L−K]\s}.

Remark 17. It is trivial to show that, for any u ∈ K, (M−1M(u)∩K ⊆ J̃)⇔ (P ∗N (M(u)) = 0).

Therefore (5.10) can be equivalently written as:

Pr(s ∈ ∂ : ∀u ∈ s/Σ>0, P ∗N (M(u)) > 0) = 0.

Comparing then with the definition of Sm-Prognosability under m = 0, so (5.4) can be written

as:

(∀τ, ρ > 0)Pr(s ∈ ∂ : ∀u ∈ s/Σ>0, P ∗N (M(u)) > ρ) < τ.

It is obvious that if a system is logically Prognosable, then it is also S0-Prognosable by definition.

However the converse is not true. For example, the system shown in Fig. 5.1 is S1-Prognosable
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and hence is S0-Prognosable by Corollary 1. However, it is not Prognosable since ∀s ∈ ∂, u ∈

s/Σ>0, P ∗N (M(u)) > 0. The stochastic version provides the flexibility of designing prognosers

that can predict faults with arbitrary level of accuracy, which may be acceptable for certain

applications even if 100% accuracy cannot be achieved (owing to lack of logical prognosability).

Another artifact of this difference between the two notions is that, in logical setting, an indicator

cannot visit a cycle of nonfault states, which can be restrictive, but in stochastic setting, an

indicator can visit a cycle of nonfault states as long as the cycle does not form a closed SCC.

In the example of Fig. 5.1, the prefix aca of the fault trace acaf is an indicator that ends

in a non-closed cycle of nonfault state (4, 4) in GR. While this does not violate stochastic

prognosability, it ends up violating logical prognosability. �

The next result shows that S0-Prognosability is stronger than S-Diagnosability, meaning

that whenever it is possible to predict faults, it is also possible to diagnose those, as can be

expected.

Theorem 12. Given a pair (L = L(G),K = L(R)) of closed regular languages with K ⊆ L, if

(L,K) is S0-Prognosable, then it is S-Diagnosable. However, the converse need not hold.

Proof. We argue by contradiction. Assume (L,K) is S0-Prognosable but not S-Diagnosable.

Let s ∈ L −K and s′ ∈ K with M(s) = M(s′) satisfy the condition in Theorem 2. Then for

any n ∈ N, Pr(t : t ∈ K\s′ ∩ Σn) =
∑

o∈∆∗ Pr(t : t ∈ K\s′ ∩ Σn,M(t) = o) =
∑

o∈∆∗ Pr(t :

t ∈ L\s ∩ Σn,M(t) = o) = Pr(t : t ∈ L\s ∩ Σn) = 1, (the second equality follows from the

condition in Theorem 2). Since ∀n, Pr(t : t ∈ K\s′ ∩ Σn) = 1, it follows from the definition of

Υ that s′ ∈ Υ (we can choose ρ < 1 to satisfy the definition of Υ). Considering s ∈ L−K and

M(s) = M(s′), we have s ∈ M−1M(Υ) ∩ L −K, which is contradictory to Corollary 2 since

(L,K) is S0-Prognosable.

To see that the converse need not hold, we consider the system shown in Fig. 5.6, where

Σ = {a, b, c, f}, Σuo = {b, f} and for σ ∈ Σ−Σuo, M(σ) = σ. After the occurrence of fault trace

af , the only observations that can be produced are the traces in c+, which are distinguishable

from any nonfault trace, and so (L,K) is S-Diagnosable. However, since M−1M(∂−0 ) ∩ Υ =

M−1M(a) ∩ {ε, ba∗} = {ba} 6= ∅, by Theorem 9, (L,K) is not S0-Prognosable.
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Figure 5.6 Refined system GR for the proof of Theorem 12

5.6 Conclusion

In this chapter, we studied the prognosis of fault, i.e., its prediction prior to its occur-

rence, for stochastic discrete event systems. We formulated the notion of Sm-Prognosability

for stochastic DESs, generalizing the corresponding notion from the logical setting [74, 75],

and showed that it is a necessary and sufficient condition for the existence of a prognoser that

can predict a fault at least m-steps prior to its occurrence, while achieving any arbitrary false

alarm and missed detection rates. (Higher accuracy of prognostic decision can be obtained by

allowing shorter reaction bound.) A polynomial complexity algorithm for the verification of

Sm-Prognosability was also provided, which checks on a pair of indistinguishable traces for the

reachability of a pair of states, one of which is a m-steps interior nonfault state and the other is

a nonindicator state (such a pair is reachable if and only if Sm-Prognosability does not hold).

The contribution of the work was further emphasized by comparing with previous related work

on fault diagnosability, which was shown to be a weaker requirement than fault prognosability,

as can be expected. There are several directions for future research: 1) An online recursive

prognosis algorithm to compute the state distribution π(o) resulted by an observation o so as

to be able to predict a fault by checking whether P ∗N (o) ≤ ρ, which in turn implies if π(o) itself

falls within a suitable range, and 2) algorithms for computing the decision threshold ρ and the

largest possible reaction bound m for given performance requirements φ, τ > 0 for FA and MD

rates. Also, an extension to the decentralized setting would be another direction for future

work.



www.manaraa.com

82

CHAPTER 6. SUMMARY AND DISCUSSION

6.1 Summary of Dissertation

In this dissertation, we studied fault diagnosis and prognosis of stochastic discrete-event

and cyber-physical systems. The main contributions of this dissertation are summarized as

follows.

1. An online detector for stochastic DESs based on recursive likelihood computation was

proposed, which has a quadratic complexity for the online monitoring, likelihood com-

putation and issuing decision upon the arrival of a new observation. The algorithm for

offline computing the detector parameters of detection threshold and delay bound so as

to achieve a given performance requirement of false alarm and missed detection rates

were presented, using a proposed procedure for constructing an extended observer. The

extended observer computes, for each observation sequence, the set of states reached in

the system model, along with their probabilities and the number of post-fault transitions

executed.

2. The existence of aforementioned detector to achieve any arbitrary performance require-

ment was shown to be equivalent to the S-Diagnosability property. And so the afore-

mentioned algorithms are guaranteed to terminate for S-Diagnosable systems and upper

bounds on the number of iterations prior to termination were provided. The complexity

for the computation of the detector parameters, namely, detection threshold and delay

bound requires constructing an extended observer whose size is exponential in the depth

of the observer tree constructed, while the depth of the tree is a complex function of the

system and specification models, the observation mask, and the desired bounds on MD

and FA rates.
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3. For a non-S-Diagnosable system an arbitrary performance is achievable only for the FA

rate, whereas a lower bound exists for the achievable MD rate that is a function of the

FA rate, and increases as FA rate is made more stringent by decreasing it. A variant of

the algorithm for the S-Diagnosable case was used to compute an upper bound for the

minimum achievable missed detection rate for a non-S-Diagnosable system.

4. We proposed the notion of input-output stochastic hybrid automaton (I/O-SHA), extend-

ing its logical counterpart by allowing randomness in invariants, guards, data updates,

and output assignments.

5. We presented a method to refine a given discrete-time stochastic system against a deter-

ministic (LTL) specification (one that can be accepted by a deterministic Büchi automa-

ton), where the refinement is an I/O-SHA with the property that the violation of the LTL

specification can be captured as a reachability property, and the probability of specifica-

tion violation versus no violation can be estimated via a state estimation computation in

the I/O-SHA model.

6. We provided a procedure to recursively compute the probability of fault versus no-fault

(specification violation versus no-violation), which is used as a statistic for issuing detec-

tion decisions. The performance of the proposed fault detection procedure is measured

in terms of FA and MD rates. The notion of S-Diagnosability to capture the capability of

detecting faults in a timely manner, within a bounded delay, and with any desired level

of accuracy in terms of missed detection and false alarm rates, was also proposed.

7. For fault prognosis problem, we proposed the notion of Sm-Prognosability, which requires

for any tolerance level ρ and error bound τ , there exists a reaction bound k ≥ m, such

that the set of fault traces for which a fault cannot be predicted k steps in advance with

tolerance level ρ, occurs with probability smaller than τ . A polynomial algorithm for

testing Sm-Prognosability was also presented.

8. We formalized the notion of a prognoser that maps observations to decisions by comparing

a suitable statistic with a threshold, and show that Sm-Prognosability is a necessary and
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sufficient condition for the existence of a prognoser with reaction bound at least m (i.e.,

prediction at leastm-steps prior to the occurrence of a fault) that can achieve any specified

FA and MD rate requirement.

6.2 Future Work

1. The verification of the diagnosability property for the stochastic hybrid systems presented

in Chapter 4 remains open at this time. The diagnosability property, which ensure the

existence of a online detector for any arbitrary false alarm and missed detection rate

requirement, should be checked before a designer can specify a performance requirement.

By the setting in Chapter 4, the verification of aforementioned diagnosability property

will reduce to certain reachability property which, as demonstrated in [63, 66], might be

solved by dynamic programming.

2. Another future direction is the adoption of probabilistic model checking technique for ver-

ification of diagnosability property for the stochastic hybrid systems presented in Chapter

4. Statistical model checking aims to verify whether a system that exhibits stochastic

behavior satisfy certain (quantitative) property, [102, 103]. One example of such quan-

titative property is expressed in PCTL (Probabilistic Computation Tree Logic) [104],

where the key operator in PCTL is P>p[φ], which means that a path formula φ is true in

a state with probability satisfying > p. Given a systems S and a path formula φ, there

are two questions that the probabilistic model checking is trying to answer: 1), whether

the probability that φ is true by S is satisfying > p, i.e., S |= P>p[φ]; or 2) what is the

exact probability that S satisfies φ, i.e., what is the value of P [S |= φ]. Two types of

approaches to address the probabilistic model checking problem have been developed,

namely numerical and statistical, the first of which iteratively computes or approximates

the exact probability of paths satisfying φ by exploring the whole state space of S, while

the second of which is to simulate the system for finitely number of times, and borrow

techniques/theories from statistics to provide statistical inference of the answer to the

probabilistic model checking problem. One assumption of statistical model checking is
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that, φ is a bounded property, i.e., a property that can be verified based on state trace

of finite length. Let Bi be a Bernoulli random variable with distribution Pr[Bi = 1] = θ

and Pr[Bi = 0] = 1− θ, and Bi is such that it equals 1 if the ith simulation of S satisfies

φ and 0 otherwise. Therefore θ = P [S |= φ]. Then the statistical model checking aims to

check 1) whether θ > p, and 2) estimate the exact value of θ, by borrowing theoretical

results from the field of statistics.

3. In current work, the LTL formula used to specify the correctness requirement is restricted

to the fragment that has deterministic Büchi accepter. This constraint was caused by

the recursive computation (4.7)-(4.9), reproduced as following:

pk|k(d|zk, lk) =
hlk(yk|d, uk)pk|k−1(d|zk−1, lk)∫

D hlk(yk|dk, uk)pk|k−1(dk|zk−1, lk)d(dk)

πk+1(l|zk) =
∑
lk∈L

πk(lk|zk−1)×
∫
D(lk→l|uk)

pk|k(dk|zk, lk)d(dk)

pk+1|k(d|zk, lk+1) =
1

πk+1(lk+1|zk)
∑
lk

πk(lk|zk−1)

×
∫
D(lk→lk+1|uk)

flk+1
(d|dk, uk)pk|k(dk|zk, lk)d(dk),

In particular, allowing nondeterminism in the specification model R will introduce a

redundancy in the computation of πk(l|zk), which propagates as the recursion of the

computation. A future direction would be to remove such constraint so as the whole class

of LTL formula can be considered.

4. We are also interested in the application of the presented work to rumor localization, or

source identification problem, in social networks (SN). A social network (SN) consists

of a set of individuals which are connected by social relations [105, 106], which could

be “friends”, “spouse” or “tendency to forward a news”, and could be represented by a

matrix called sociomatrix which is square and with binary elements. If a social network

is with more than one kind of social relation, then for each social relation there is one

sociomatrix. For a SN with stochastic process, then for a given kind of social relation,

there could be more than one sociomatrix (denoted as x ∈ X), and each one has a

probability P (x). The problem of interest is formulated as following: Suppose we have a
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social network with n individuals, connected by k kinds of social relations, one of which

represents how a rumor is propagating. When we observe a rumor over the SN with

partial/unreliable observations, how determine which individual initializes the rumor? A

similar problem was formulated and solved in [107], where the network is an undirected

graph and rumors can spread between connected nodes. Once a node is infected then

it could not be recovered, which is known as susceptible-infected (SI) model. Once a

node is infected, the time it takes to spread the rumor to its neighbor obeys exponential

distribution with parameter λ and in the paper it is assumed λ = 1, i.e., the transition

probability is homogeneous and all nodes connected to a same infected node are equal

likely to be infected. The observer examines the network at certain time t and knows

the subgraph formed by all infected nodes and the research problem is to determine (in

a off-line fashion) which node in the subgraph is blamed for the rumor. The authors

of [107] propose Maximal Likelihood Estimator for this problem and various properties

of the estimator are also studied with respect to many kinds of network, e.g., regular

trees, irregular trees and general graphs. The difference between the problem in [107]

and the one described above is that: 1) in [107] there is only one message (the rumor),

spreading in the network, i.e., there is only one social relation, and 2) and by the time

t all infected nodes are available to the observer, thus there is no hidden information or

partial observability in the problem of [107].

5. The diagnosability/prognosability property of a system is essentially capturing the capa-

bility of system to leak some information to some trustful observer. A converse problem,

i.e., the secrecy property as in [108, 109], examines the capability of system to hide some

information to any untrusting observer. A more realistic scenario is, when a system is

simultaneously observed by both desirable and undesirable observers, and the system is

required to deliver information to certain trustful observer while blocking the untrust-

ing observers from accessing the system information. Also interested as a future work

is to examine the secrecy property in cyber-physical system, where a cyber component

interacts with a physical component [110].
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6. We have studied the diagnosability and prognosability properties of a given stochastic sys-

tem. Now when there is flexibility to exercise control in order to meet some correctness

specification [57, 58, 59, 60, 61], additional performance specifications, including diagnos-

ability or prognosability may be added. So designing control strategies for correctness as

well performance specifications of diagnosability/prognosability remains a future research

direction.
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APPENDIX A. ADDITIONAL PROOFS FOR CHAPTER 3

Proof for Theorem 1: Let s′ be the minimal length trace that has different probabilities in

A1 and A2. Denote p1 = αA1(s′), p2 = αA2(s′) and |s′| = n′. Assume w.l.o.g. that p1 > p2. Let

s be our observation where |s| = n = Kn′. Divide s into K pieces, each of which has length

equal to n′. Count the number of pieces whose observation is exactly s′, denoting this number

as k, and denote the proportion as p̂n = k
K . Let Hi be the hypothesis that s is generated by

Ai, i = 1, 2. To determine which hypothesis is correct, consider the likelihood ratio L(H2|p̂n)

L(H2|p̂n) =
Pr(p̂n|H2)

Pr(p̂n|H1)

=

 K

p̂nK

 (p2)p̂nK(1− p2)K−p̂nK

 K

p̂nK

 (p1)p̂nK(1− p1)K−p̂nK

=
(p2)p̂nK(1− p2)K−p̂nK

(p1)p̂nK(1− p1)K−p̂nK
.

Taking the logarithm of the likelihood function yields

logL(H2|p̂n) = p̂nK log

(
p2

p1

)
+ (K − p̂nK) log

(
1− p2

1− p1

)
= K

{
log

(
1− p2

1− p1

)
+p̂n

(
log

(
p2

p1

)
− log

(
1− p2

1− p1

))}
.

As n increases (or equivalently K increases), logL(H2|p̂n) decreases large as well, as long as

log
(

1−p2
1−p1

)
+ p̂n

(
log
(
p2
p1

)
− log

(
1−p2
1−p1

))
< 0 is satisfied, which is the case when

p̂n >
− log

(
1−p2
1−p1

)
log
(
p2
p1

)
− log

(
1−p2
1−p1

) = r.
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Note that P1 = {p1, 1−p1} and P2 = {p2, 1−p2} are two different probability distributions.

According to Gibbs’ inequality we have

p1 log p1 + (1− p1) log(1− p1) > p1 log p2 + (1− p1) log(1− p2),

which is equivalent to

log

(
p1

p2

)
>

1− p1

p1
log

(
1− p2

1− p1

)
.

Therefore

r =
log
(

1−p2
1−p1

)
log
(
p1
p2

)
+ log

(
1−p2
1−p1

) < log
(

1−p2
1−p1

)
1−p1
p1

log
(

1−p2
1−p1

)
+ log

(
1−p2
1−p1

) = p1.

Similarly we can show that r > p2.

Now if s is generated by A1 then by the law of large numbers we have

(∀τ > 0)(∃n1 ∈ N)(∀s generated by A1 ∧ n > n1)Pr(|p̂n − p1| > p1 − r) < τ.

Therefore Pr(p̂n < r) < τ . For any 0 < ρ < 1, choose n2 ∈ N such that (n > n2) ∧ (p̂n >

r) ⇒ logL(H2|p̂n) < log ρ
1−ρ ⇒ L(H2|p̂n) < ρ

1−ρ ⇒ Pr(H2|p̂n) = Pr(p̂n|H2)
Pr(p̂n|H2)+Pr(p̂n|H1) < ρ. Let

n = max(n1, n2). Then if s is generated by A1, |s| > n and p̂n > r, then Pr(H2|p̂n) < ρ, i.e.,

Pr(s2|M(s1) = M(s2)) < ρ. Therefore

Pr(s1 : |s1| > n,Pr(s2|M(s1) = M(s2)) > ρ) < Pr(s1 : |s1| > n, p̂n < r) < τ.

Proof of Theorem 2: (Sufficiency) If (3.4) is true, then for any extension t of s, let Ust :=

M−1M(st) ∩ L − {s, s′}Σ∗, and for any extension t′ of s′ such that s′t′ ∈ K ∩M−1M(st), let

UKst := M−1M(st) ∩K − {s′t′}. Then we have

PN (st) =
Pr(s′t′) + Pr(UKst )

Pr(s′t′) + Pr(st) + Pr(Ust)

≥ Pr(s′t′)

Pr(s′t′) + Pr(st) + Pr(Ust)

=
Pr(s′)Pr(t′)

Pr(s′)Pr(t′) + Pr(s)Pr(t) + Pr(Ust)

=
Pr(s′)

Pr(s′) + Pr(s) + Pr(Ust)/Pr(t)
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≥ Pr(s′)

Pr(s′) + Pr(s) + Pr(Ust)/Pr(st)
.

Note that the third equality utilizes the fact that s and s′ satisfy (3.4) and so Pr(t) = Pr(t′).

Now consider the extensions of any trace in Ust. According to (3.4), for any trace in Ust, its

extensions are not equally distributed as the extensions of s. By applying Theorem 1, one

can conclude that for any ρ′ > 0, τ ′ > 0, there exists n′ ∈ N such that Pr(t : t ∈ L\s, |t| ≥

n′, P r(Ust)/Pr(st) > ρ′) < τ ′, i.e., Pr(t : t ∈ L\s, |t| ≥ n′, P r(Ust)/Pr(st) ≤ ρ′) ≥ 1 − τ ′.

When Pr(Ust)/Pr(st) ≤ ρ′, we have

PN (st) ≥ Pr(s′)

Pr(s′) + Pr(s) + Pr(Ust)/Pr(st)
≥ Pr(s′)

Pr(s′) + Pr(s) + ρ′
.

Now consider fixed τ ′ > 0 and ρ′ > 0, and t ∈ L\s with |t| ≥ n′ satisfying Pr(Ust)/Pr(st) ≤ ρ′.

One can conclude that, with at least (1 − τ ′) probability that the extensions of s would have

PN value larger than Pr(s′)
Pr(s′)+Pr(s)+ρ′ . Let 0 < ρ < Pr(s′)/(Pr(s) + Pr(s′)) and 0 < τ < 1− τ ′.

Then we have:

(∀n ∈ N)Pr(t : t ∈ L\s, |t| ≥ n, PN (st) > ρ) ≥ 1− τ ′ > τ.

It follows that the system is not S-Diagnosable.

(Necessity) If (3.4) is not true, then for all indistinguishable pairs of fault and nonfault

traces (s, s′), there exists a future observation that has different probability of being fault

versus nonfault, i.e.,

(∀s ∈ L−K, s′ ∈ K s.t. M(s) = M(s′))(∃o ∈ ∆∗)

Pr(t : t ∈ L\s,M(t) = o) 6= Pr(t : t ∈ K\s′,M(t) = o).

Then according to the likelihood ratio test presented in Theorem 1, after the occurrence of any

fault trace, by comparing the number of occurrences of the minimal segment of observations

that has different probability of being fault versus nonfault, the ambiguity of the occurrence of

a fault decreases as the length of extension increases, i.e., there exists n ∈ N such that for all

ρ > 0, τ > 0 and s ∈ L −K, the extensions of s longer than n and having PN larger than ρ

occur with probability smaller than τ , i.e.,

(∀τ > 0 ∧ ∀ρ > 0)(∃n ∈ N)(∀s ∈ L−K)
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Pr(t : t ∈ L\s, |t| ≥ n, PN (st) > ρ) < τ.

Thus we can conclude that the system is S-Diagnosable.

Proof for Theorem 4: According to the proof of Theorem 3, for i ∈ {1, 2, 3}, there exists mi

such that ρi obtained by examining traces in Ki shorter than mi ensures the FA rate of Ki be

smaller than φi. Since φ2 = 0 (none of the traces in K2 are false-alarmed because no decision

is issued for those traces), by choosing φ1 and φ3 such that φ1 + φ3 ≤ φ, the requirement of

the specified FA rate is met. It follows that Algorithm 1 is guaranteed to terminate with tree

depth d1 ≤ maximi, returning a threshold ρD ≤ mini ρi such that the overall FA rate is upper

bounded by φ.

Proof for Theorem 5: In the tree of Algorithm 2, a node is deemed a leaf if the “F” decision

is made upon reaching it, and otherwise the tree itself is terminated at a uniform depth so that

the upper bound for the MD rate has dropped below the requirement τ . Expand (3.7) and

we have PmdD =
∑

z∈Zm:PN (z)>ρD

∑
((x,q),p,n)∈z:(x,q)∈Y1 p +

∑
z∈Zm:PN (z)>ρD

∑
((x,q),p,n)∈z:q=F p.

Similar to the proof of Theorem 3, the nonfaulty-ness in K1 is a transient property, and so

for any τ1 > 0, there exists m′ ∈ N such that Pr(s ∈ K ∩ pr(L − K) : |s| ≥ m′) < τ1,

and hence the first term on the RHS is less than τ1. For S-Diagnosable systems, according

to Theorem 3, for any τ2 > 0 there exists n′D such that with this choice of delay bound, the

second term on the RHS is less than τ2. Therefore by choosing τ1 and τ2 such that τ1 + τ2 ≤ τ ,

Algorithm 2 is guaranteed to terminate with tree depth d2 ≤ m′+n′D, returning a delay bound

nD = 1 + max((x,q),p,n)∈z,z∈Z n such that the overall MD rate is upper bounded by τ .
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APPENDIX B. DERIVATION OF EQUATIONS (4.7)-(4.9)

Here we derive the equations (4.7)-(4.9) in Chapter 4. According to the definition, we have

pk+1|k(d|zk, lk+1) =
Pr(dk+1 = d, zk, lk+1)

Pr(zk, lk+1)

pk|k(d|zk, lk) =
Pr(dk = d, zk, lk)

Pr(zk, lk)

πk+1(l|zk) =
Pr(lk+1 = l, zk)∑
l∈L Pr(lk+1 = l, zk)

.

Therefore we have

pk|k−1(d|zk−1, lk) =
Pr(dk = d, zk−1, lk)

Pr(zk−1, lk)

πk(l|zk−1) =
Pr(lk = l, zk−1)∑
l∈L Pr(lk = l, zk−1)

.

Combining pk|k(d|zk, lk) and pk|k−1(d|zk−1, lk), we obtain:

= pk|k(d|zk, lk)

=
Pr(dk = d, zk, lk)

Pr(zk, lk)

=
Pr(dk = d, zk−1, lk, (uk, yk))

Pr(zk−1, lk, (uk, yk))

=
Pr(dk = d, zk−1, lk)Pr(yk|dk = d, uk, lk)∑

dk∈D Pr(dk, z
k−1, lk)Pr(yk|dk, uk, lk)

=

Pr(dk=d,zk−1,lk)
Pr(zk−1,lk)

Pr(yk|dk = d, uk, lk)∑
dk∈D

Pr(dk,zk−1,lk)
Pr(zk−1,lk)

Pr(yk|dk, uk, lk)

=
pk|k−1(d|zk−1, lk)Pr(yk|dk = d, uk, lk)∑
dk∈D pk|k−1(dk|zk−1, lk)Pr(yk|dk, uk, lk)

=
pk|k−1(d|zk−1, lk)hlk(yk|d, uk)∫

D pk|k−1(dk|zk−1, lk)hlk(yk|dk, uk)d(dk)
,

i.e.,

pk|k(d|zk, lk) =
pk|k−1(d|zk−1, lk)hlk(yk|d, uk)∫

D pk|k−1(dk|zk−1, lk)hlk(yk|dk, uk)d(dk)
.
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Thus we have shown (4.7). Next by combining πk+1(l|zk), πk(l|zk−1) and pk|k(d|zk, lk), we

have:

πk+1(l|zk) =
Pr(lk+1 = l, zk)∑
l∈L Pr(lk+1 = l, zk)

= Pr(lk+1 = l|zk)

=
∑
lk∈L

∑
dk∈D

Pr(lk, lk+1 = l, dk|zk)

=
∑
lk∈L

∑
dk∈D

Pr(lk+1 = l, dk|lk, zk)Pr(lk|zk)

=
∑
lk∈L

∑
dk∈D(lk→l|uk)

Pr(dk|lk, zk)Pr(lk|zk−1)

=
∑
lk∈L

πk(lk|zk−1)

∫
D(lk→l|uk)

pk|k(dk|zk, lk)d(dk)

Thus we have established (4.8). Finally combining pk+1|k(d|zk, lk+1), πk+1(l|zk), πk(l|zk−1) and

pk|k(d|zk, lk) yields:

pk+1|k(d|zk, lk+1) =
Pr(dk+1 = d, zk, lk+1)

Pr(zk, lk+1)

=
Pr(dk+1 = d, lk+1|zk)Pr(zk)

Pr(zk, lk+1)

=
1

πk+1(lk+1|zk)
Pr(dk+1 = d, lk+1|zk)

=
1

πk+1(lk+1|zk)

∑
lk∈L

∑
dk∈D

Pr(dk+1 = d, dk, lk, lk+1|zk)

=
1

πk+1(lk+1|zk)

∑
lk∈L

∑
dk∈D

Pr(dk+1 = d, dk, lk+1|lk, zk)Pr(lk|zk)

=
1

πk+1(lk+1|zk)

∑
lk∈L

∑
dk∈D

Pr(lk|zk−1)

Pr(dk+1 = d, |dk, lk+1, lk, z
k)Pr(dk, lk+1|lk, zk)

=
1

πk+1(lk+1|zk)

∑
lk∈L

πk(lk|zk−1)
∑

dk∈D(lk→lk+1|uk)

Pr(dk+1 = d, |dk, lk+1, lk, z
k)Pr(dk, lk+1|lk, zk)

=
1

πk+1(lk+1|zk)

∑
lk∈L

πk(lk|zk−1)
∑

dk∈D(lk→lk+1|uk)

flk+1
(d|dk, uk)Pr(dk|lk, zk)

=
1

πk+1(lk+1|zk)

∑
lk∈L

πk(lk|zk−1)∫
D(lk→lk+1|uk)

flk+1
(d|dk, uk)pk|k(dk|zk, lk)d(dk)
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i.e,

pk+1|k(d|zk, lk+1) =
1

πk+1(lk+1|zk)
∑
lk∈L

πk(lk|zk−1)∫
D(lk→lk+1|uk)

flk+1
(d|dk, uk)pk|k(dk|zk, lk)d(dk)

Thus we have also established (4.9).
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APPENDIX C. ADDITIONAL MATERIAL FOR CHAPTER 5

The following lemma is needed in the sufficiency proof of Theorem 10.

Lemma 5. For a pair (L,K) of Sm-Prognosable closed regular languages with K ⊆ L, we have

(∀ρ′, φ > 0)(∃d ∈ N)(∀s ∈ ℵ)Pr(t : t ∈ ℵ\s : |t| ≥ d, P ∗N (M(st)) < ρ′) < φ, (C.1)

where the persistent nonfault traces ℵ is defined in Definition 8 and P ∗N is as defined by (5.1)

and (5.2).

Proof. Since P ∗N (M(st)) < ρ′ if and only if 1 − P ∗N (M(st)) > 1 − ρ′, letting ρ := 1 − ρ′, (C.1)

is true if and only if

(∀ρ, φ > 0)(∃d ∈ N)(∀s ∈ ℵ)Pr(t : t ∈ ℵ\s : |t| ≥ d, 1− P ∗N (M(st)) > ρ) < φ. (C.2)

Thus showing (C.1) is equivalent to showing that (C.2) holds. Next we show that (C.2) is

equivalent to showing that the pair (K,K − ℵ) is S-Diagnosable. First note that for any

st ∈ ℵ ⊆ Υ, it holds that,

P ∗N (M(st)) =
minn∈N Pr({M−1M(st) ∩K}Σn ∩K)

Pr(M−1M(st) ∩ L)

=
Pr(M−1M(st) ∩ ℵ)

Pr(M−1M(st) ∩ L)

=
Pr(M−1M(st) ∩ ℵ)

Pr(M−1M(st) ∩K)
,

where we have used the fact that (L,K) is Sm-Prognosable and so for st ∈ Υ, M−1M(st)∩L =

M−1M(st) ∩ [K ∪ (L−K)] = M−1M(st) ∩K (follows from Corollary 2). Then,

1− P ∗N (M(st)) = 1− Pr(M−1M(st) ∩ ℵ)

Pr(M−1M(st) ∩K)
=
Pr(M−1M(st) ∩ (K − ℵ))

Pr(M−1M(st) ∩K)
, (C.3)

which is the probability of ambiguity of st as in (2.3) when the pair of languages (L,K) is

replaced with (K,K − ℵ). Thus we can replace 1 − P ∗N (M(st)) in (C.2) with the right hand
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side of (C.3), and in which case (C.2) becomes equivalent to S-Diagnosability of (K,K −ℵ) as

in (2.2).

Next we show that the pair (K,K −ℵ) is indeed S-Diagnosable. Assume for contradiction

that (K,K − ℵ) is not S-Diagnosable. Then there exists s ∈ ℵ and s′ ∈ K − ℵ satisfying the

condition of Theorem 2. Then we have ∀n ∈ N, Pr(t : t ∈ [K −ℵ]\s′ ∩Σn) =
∑

o∈∆∗ Pr(t : t ∈

[K−ℵ]\s′∩Σn,M(t) = o) =
∑

o∈∆∗ Pr(t : t ∈ K\s∩Σn,M(t) = o) = Pr(t : t ∈ K\s∩Σn) = 1,

where the second equality follows from Theorem 2 and the last equality follows from the fact

that s ∈ ℵ (so all its extensions are in K). Thus, ∀n ∈ N, P r(t : t ∈ [K − ℵ]\s′ ∩ Σn) = 1,

i.e., ∀n ∈ N, P r({s′}Σn ∩ (K − ℵ)) = 1, implying that ∀n ∈ N, P r({s′}Σn ∩ K) = 1 (since

K − ℵ ⊆ K), which further implies that s′ ∈ ℵ. This contradicts the fact that s′ ∈ K − ℵ. So

the S-Diagnosability of (K,K − ℵ) follows, which proves (C.2) and equivalently (C.1).
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